Equivalent definitions for Lipschitz compact connected manifolds

RADU MICULESCU

(Received Mars 23, 1998)

Abstract - In this paper we present an alternative definition for Lipschitz manifolds, modelled in a real normed space.

Key words and phrases: Lipschitz manifolds

Mathematics Subject Classification: 58B99, 57N99

1 Introduction

The purpose of this paper is to show that for a compact connected Lipschitz manifold modelled on a real normed space, the definition based on atlases is essentially the same with the following: such a manifold is a metric space that locally is Lipschitz equivalent to an open set from the modelling space.

The initial motivation for our work comes from [2] where the corresponding result for LIP-n manifolds is given.

In the following we will be more precisely. First let us recall some basic facts.

DEFINITION 1 If (X,d) and (Y,d') are metric spaces, a map $f:X\to Y$ is said to be Lipschitz, if there is a constant $M\geq 0$ such that $d'(f(x),f(y))\leq M\cdot d(x,y)$ for all x,y in X and lip(f) is defined as the least such a constant. If every $x\in X$ has a neighborhood U such that $f_{|U}$ is Lipschitz, f is said to be locally Lipschitz (abbreviated LIP).

REMARK 1 Intuitively speaking, a Lipschitz (LIP) map is one that obeys (temporary) speed limits.

THEOREM 1 (RADEMACHER, see [3]). If U is an open set in \mathbb{R}^n and $f:U\to\mathbb{R}^m$ is a Lipschitz map, then f is differentiable outside of a Lebesgue null subset of U.

Now we define the Lipschitz (LIP) manifolds.

DEFINITION 2 (see [5], p. 42) A compact, oriented, n-topological manifold M, without boundary, is a Lipschitz manifold, if there is a family $(U_i, h_i)_{i \in I}$, where $(U_i)_{i \in I}$ is an open cover of M, $h_i : U_i \to V_i \subseteq \mathbf{R}^n$ is a homeomorphism from U_i onto an open subset V_i of \mathbf{R}^n and $h_i \circ h_j^{-1} : h_j(U_i \cap U_j) \to h_i(U_i \cap U_j)$ are Lipschitz for all $i, j \in I$, $U_i \cap U_j \neq \emptyset$.

DEFINITION 3 (see [2], p. 97) A LIP n-manifold is a Hausdorff topological space M, such that there is a family $(U_i,h_i)_{i\in I}$, where $(U_i)_{i\in I}$ is an open cover of M, $h_i:U_i\to U_i'$ is a homeomorphism, U_i' being open either in \mathbf{R}^n or \mathbf{R}^n_+ , and $h_i\circ h_j^{-1}:h_j(U_i\cap U_j)\to h_i(U_i\cap \dot{U}_j)$ are LIP for all $i,j\in I,U_i\cap U_j\neq\emptyset$.

The key features of a Lipschitz (LIP) manifold are that, on one hand it seems to be only slightly weaker than a smooth structure, so that one can still do analysis with it (see [5]), and yet essential uniqueness of this structure is almost automatic in many situations, that are very far from being smooth (see [4]).

In [2] it is proved, using strong results, like an embedding theorem or a special case of a metrization theorem for locally metric spaces, that, for second countable spaces, Definition 3 is essentially the same with:

DEFINITION 4 (see [2], p. 97) A LIP n-manifold is a separable metric space M, such that every point $x \in M$ has a closed neighborhood U_x for which there is a bijection $f_x: U_x \to [-1,1]^n$, such that f_x and f_x^{-1} are LIP.

In this paper we give, by a direct proof, using no other results, a similar alternative definition for compact connected Lipschitz manifolds, modelled on a real normed space (see theorem below).

2 The result

THEOREM 2 Let X be a real normed space. Then the following statements are equivalent:

a) M is a compact, connected, topological space, for which there exists a family $(U_j, h_j)_{j \in \{1,...,n\}}$, $n \in \mathbb{N}^*$, where $(U_j)_{j \in \{1,...,n\}}$ is an open cover of M and $h_j: W_j = \overset{\circ}{W_j} \subseteq \mathcal{X} \to U_j$ is a homeomorphism for all $j \in \{1,...,n\}$, such that $h_i^{-1} \circ h_j: h_j^{-1}(U_i \cap U_j) \to h_i^{-1}(U_i \cap U_j)$ is Lipschitz for all $i, j \in \{1,...,n\}$, so that $U_i \cap U_j \neq \emptyset$.

b) M is a compact, connected, metric space, for which there exists a family (V_p, g_p)_{p∈{1,...,m}}, m ∈ N*, where (V_p)_{p∈{1,...,m}} is an open cover of M and g_p: W'_p = W'_p⊆ X → V_p is a bijection, such that g_p and g_p⁻¹ are Lipschitz for all p ∈ {1,...,m}.

Let us observe that the affirmation a) is analogous to the Definition 2, for Lipschitz manifolds modelled in a real normed space.

Proof. Obviously $b \Rightarrow a$. For $a \Rightarrow b$, we first construct

• d a pseudo-metric on M.

Let us consider a partition of unity $(f_j)_{j \in \{1,\dots,n\}}$ related to the open cover $(U_j)_{j \in \{1,\dots,n\}}$ of M. In the following we will use the notation

$$J(x,y) = \{j \in \{1,...,n\} \mid x,y \in f_j^{-1}((0,1])\}.$$

We define $d: M \times M \to \mathbf{R}$ by

$$d(x,y) = \inf \left\{ \sum_{i=1}^{t} \frac{1}{\sum\limits_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i)} \cdot \sum_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \times f_j(x_i) \cdot \left\| h_j^{-1}(x_{i-1}) - h_j^{-1}(x_i) \right\| \mid t \in \mathbb{N}^*, x = x_0, ..., x_{t-1}, x_t = y \in M \text{ so that } J(x_{i-1},x_i) \neq \emptyset \text{ for all } i \in \{1,...,t\} \right\}.$$

It is easy to see that d is a pseudometric on M.

• d gives the original topology on M. First we prove that

$$Id:(M,d)\to M$$
 is continuous (1)

Indeed, if $x_0 \in M$ there is $j_0' \in \{1, ..., n\}$ so that $x_0 \in f_{j_0'}^{-1}((0, 1]) \subseteq U_{j_0'}$. Let us take $W \in \mathcal{V}_{x_0}$. We can consider $V \in \mathcal{V}_{x_0}$ such that $V \subseteq f_{j_0'}^{-1}((0, 1]) \subseteq U_{j_0'}$, $V \subseteq W$ and for all $j \in \{1, ..., n\}$ such that $U_j \cap V \neq \emptyset$, we have:

$$V \subseteq U_j$$
 or $V \cap f_j^{-1}((0,1]) = \emptyset$.

We can construct such a V in the following way: If $x_0 \in U_j$ we consider $V_j = W \cap f_{j_0}^{-1}((0,1]) \cap U_j$. If $x_0 \notin U_j$, as $\overline{f_j^{-1}((0,1])} \subseteq U_j$ we have $x_0 \notin \overline{f_j^{-1}((0,1])}$; since X is normal (being compact), there is $U^j \in \mathcal{V}_{x_0}$ so that $U^j \cap \overline{f_j^{-1}((0,1])} = \emptyset$; then we consider $V_j = W \cap f_{j_0}^{-1}((0,1]) \cap U^j$. Finally we

take $V = \bigcap_{j \in \{1,...,n\}} V_j$. As h_j , for $j \in \{1,...,n\}$, is homeomorphism, we can consider r > 0 so that for all $j \in \{1,...,n\}$, with the property that $V \subseteq U_j$, we have

$$h_j(B_r(h_j^{-1}(x_0))) = \{x \in M \mid ||h_j^{-1}(x) - h_j^{-1}(x_0)|| < r\} \subseteq V.$$

Now we show that

$$B_{\frac{r}{m}}(x_0) \subseteq V \subseteq W, \tag{2}$$

where $m=\max\limits_{\substack{i,\,j\in\{1,\,...,\,n\}\ U_i\cap U_j\neq\emptyset}} lip(h_j^{-1}\circ h_i)$, so we deduce that $Id:(M,d)\to M$

is continuous.

In order to prove the inclusion above, let us take $y \in B_{\frac{r}{m}}(x_0)$, i.e. $d(x_0, y) < \frac{r}{m}$. Therefore, there are $t \in \mathbb{N}^*$, $x = x_0, ..., x_{t-1}, x_t = y \in M$, so that $J(x_{i-1}, x_i) \neq \emptyset$ for all $i \in \{1, ..., t\}$, such that

$$\begin{split} \sum_{i=1} \frac{1}{\sum\limits_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i)} \times \\ \sum_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_j^{-1}(x_{i-1}) - h_j^{-1}(x_i) \right\| < \frac{r}{m}. \end{split}$$

Now we show that, if $x_i \in V$ for all $i \in \{0, ..., q\}$, where $q \in \{0, ..., t-1\}$, then $x_{q+1} \in V$. As $x_0 \in V$, then we obtain, by the assertion above, that $x_t = y \in V$, so (2) is true.

Let us prove the affirmation above. For all $j \in J(x_q, x_{q+1})$, $x_q \in V \cap f_j^{-1}((0,1])$, so, because of the properties of $V, V \subseteq U_j$. Hence $x_0, x_1, ..., x_q \in V \subseteq U_j$ for all $j \in J(x_q, x_{q+1})$. If $j_0 \in J(x_q, x_{q+1})$, then $x_{q+1} \in f_{j_0}^{-1}((0,1]) \subseteq U_{j_0}$, and we obtain

$$\begin{split} \left\| h_{j_0}^{-1}(x_0) - h_{j_0}^{-1}(x_{q+1}) \right\| &\leq \sum_{i=1}^{q+1} \left\| h_{j_0}^{-1}(x_{i-1}) - h_{j_0}^{-1}(x_i) \right\| \leq \\ &\leq \sum_{i=1}^{q+1} \frac{1}{\sum\limits_{j \in J(x_{i-1}, x_i)} f_j(x_{i-1}) \cdot f_j(x_i)} \cdot \sum_{j \in J(x_{i-1}, x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \times \\ \left\| h_{j_0}^{-1}(x_{i-1}) - h_{j_0}^{-1}(x_i) \right\| &= \sum_{i=1}^{q+1} \frac{1}{j \in J(x_{i-1}, x_i)} \int_{f_j(x_{i-1}) \cdot f_j(x_i)} \times \\ \end{split}$$

$$\sum_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_{j_0}^{-1} \circ h_j \circ h_j^{-1}(x_{i-1}) - h_{j_0}^{-1} \circ h_j \circ h_j^{-1}(x_i) \right\| \le$$

$$\leq m \sum_{i=1}^{t} \frac{1}{\sum\limits_{j \in J(x_{i-1}, x_i)} \int f_j(x_{i-1}) \cdot f_j(x_i)} \sum_{j \in J(x_{i-1}, x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \times \\ \left\| h_j^{-1}(x_{i-1}) - h_j^{-1}(x_i) \right\| < m \cdot \frac{r}{m} = r,$$

so, $x_{q+1} \in h_{j_0}(B_r(h_{j_0}^{-1}(x_0))) \subseteq V$ Now we prove that

$$Id: M \to (M, d)$$
 is continuous (3)

Indeed, if $x_0 \in M$, then $x_0 \in f_{j_0}^{-1}((0,1])$, ..., $f_{j_p}^{-1}((0,1])$ and $x_0 \notin f_j^{-1}((0,1])$ for $j \in \{1,...,n\} \setminus \{j_0,...,j_p\}$. As $h_{j_1}^{-1}: f_{j_1}^{-1}((0,1]) \to h_{j_1}^{-1}(f_{j_1}^{-1}((0,1]))$ is continuous in x_0 for all $l \in \{0,1,...,p\}$, we deduce that, for every r > 0, there is $U'_{j_1} \in \mathcal{V}_{x_0}$, $U'_{j_1} \subseteq f_{j_1}^{-1}((0,1])$ such that

$$\left\|h_{j_l}^{-1}(y)-h_{j_l}^{-1}(x_0)\right\|< r,$$

for every $y \in U'_{j_l}$ and every $l \in \{0, 1, ..., p\}$. If $U = \bigcap_{l=0}^{p} U'_{j_l} \in \mathcal{V}_{x_0}$, then $y \in U$ implies

$$d(x_0, y) \leq \frac{1}{\sum\limits_{j \in J(x_0, y)} f_j(x_0) \cdot f_j(y)} \cdot \sum_{j \in J(x_0, y)} f_j(x_0) f_j(y) \cdot \left\| h_j^{-1}(y) - h_j^{-1}(x_0) \right\| \leq C_0 \left\| h_j^{-1}(y) - h_j^{-1}(y) - h_j^{-1}(y) \right\| \leq C_0 \left\| h_j^{-1}(y) - h_j^{-1}$$

$$\leq \max_{l \in \{0,1,\ldots,p\}} \left\| h_{j_l}^{-1}(y) - h_{j_l}^{-1}(x_0) \right\| < r,$$

so, $U \subseteq B_r(x_0)$, i.e. $Id: M \to (M, d)$ is continuous. From (1) and (3) we infer that d gives the original topology on M.

• d is a metric on M.

Indeed, let us consider $x,y\in M$, so that d(x,y)=0. For $x'\in M$ arbitrary, since $\sum_{j=1}^n f_j(x')=1$, there is $k_{x'}\in\{1,...,n\}$ such that $f_{k_{x'}}(x')\neq 0$, i.e. $x'\in f_{k_{x'}}^{-1}((0,1])$. As $f_{k_{x'}}^{-1}((0,1])$ is open, as d gives the original topology on M, we obtain:

for each $x^{'} \in M$ there exist $k_{x^{'}} \in \{1,...,n\}$ and $\delta_{x^{'}} > 0$, so that

$$B_{\delta_{-}}(x') \subseteq B_{3\cdot\delta_{-}}(x') \subseteq f_{k_{-}}^{-1}((0,1]) \subseteq U_{k_{-}}.$$
 (4)

If we consider $0 < \varepsilon < \delta_x$, then $0 = d(x,y) < \varepsilon < \delta_x$, so we can choose $t \in \mathbb{N}^*$, and $x = x_0, ..., x_{t-1}, x_t = y \in M$ so that $J(x_{i-1}, x_i) \neq \emptyset$ for all $i \in \{1, ..., t\}$, such that

$$\sum_{i=1}^{t} \frac{1}{\sum_{j \in J(x_{i-1},x_i)} \int_{f_j(x_{i-1}) \cdot f_j(x_i)} \cdot \times} \sum_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_j^{-1}(x_{i-1}) - h_j^{-1}(x_i) \right\| < \varepsilon < \delta_x.$$

Then, for each $l, m \in \{0, ..., t\}, l < m$ we get

$$d(x_{l}, x_{m}) \leq \sum_{s=l+1}^{m} \frac{1}{\sum\limits_{j \in J(x_{s-1}, x_{s})} f_{j}(x_{s-1}) \cdot f_{j}(x_{s})} \times$$

$$\sum_{j \in J(x_{i-1}, x_{i})} f_{j}(x_{s-1}) \cdot f_{j}(x_{s}) \cdot \left\| h_{j}^{-1}(x_{s-1}) - h_{j}^{-1}(x_{s}) \right\| \leq$$

$$\leq \sum_{i=1}^{t} \frac{1}{\sum\limits_{j \in J(x_{i-1}, x_{i})} f_{j}(x_{i-1}) \cdot f_{j}(x_{i})} \cdot \sum_{j \in J(x_{i-1}, x_{i})} f_{j}(x_{i-1}) \cdot f_{j}(x_{i}) \times$$

$$\left\| h_{j}^{-1}(x_{i-1}) - h_{j}^{-1}(x_{i}) \right\| < \varepsilon < \delta_{x},$$

so, $\{x_0, x_1, ..., x_t\} \subseteq B_{\delta_x}(x_0) = B_{\delta_{x_0}}(x_0)$. Using (4), we can choose $k_0 \in \{1, ..., n\}$ such that

$$\{x_0, x_1, ..., x_t\} \subseteq B_{\delta_{x_0}}(x_0) \subseteq B_{3 \cdot \delta_{x_0}}(x_0) \subseteq f_{k_0}^{-1}((0, 1]) \subseteq U_{k_0}.$$

Denoting $J = \{j \in \{1, ..., n\} \mid U_j \cap U_{k_0} \neq \emptyset \}$ and $m = \min_{j \in J} \frac{1}{lip(h_{k_0}^{-1} \circ h_j)}$ we obtain

$$m \cdot \left\| h_{k_0}^{-1}(x) - h_{k_0}^{-1}(y) \right\| \le m \cdot \sum_{i=1}^{t} \left\| h_{k_0}^{-1}(x_{i-1}) - h_{k_0}^{-1}(x_i) \right\| =$$

$$= m \cdot \sum_{i=1}^{t} \frac{1}{\sum_{j \in J(x_{i-1}, x_i) \cap J} \int_{j}^{t} f_j(x_{i-1}) \cdot f_j(x_i)} \cdot \sum_{j \in J(x_{i-1}, x_i) \cap J} f_j(x_{i-1}) \cdot f_j(x_i) \times$$

$$\left\| h_{k_0}^{-1}(x_{i-1}) - h_{k_0}^{-1}(x_i) \right\| = m \cdot \sum_{i=1}^{t} \frac{1}{\sum_{j \in J(x_{i-1}, x_i)} f_j(x_{i-1}) \cdot f_j(x_i)} \times$$

$$\sum_{j \in J(x_{i-1},x_i) \cap J} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_{k_0}^{-1} \circ h_j \circ h_j^{-1}(x_{i-1}) - h_{k_0}^{-1} \circ h_j \circ h_j^{-1}(x_i) \right\| \le C_0 \|f_j(x_i)\| \le C_0$$

$$\leq \sum_{i=1}^{t} \frac{1}{\sum\limits_{j \in J(x_{i-1}, x_i)} \int f_j(x_{i-1}) \cdot f_j(x_i)} \cdot \sum_{j \in J(x_{i-1}, x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \times \|h_j^{-1}(x_{i-1}) - h_j^{-1}(x_i)\| < \varepsilon,$$

for all ε , such that $0 < \varepsilon < \delta_x$.

We infer that $h_{k_0}^{-1}(x) = h_{k_0}^{-1}(y)$, so, x = y, since h_{k_0} is homeomorphism.

• The construction of the family $(V_p, g_p)_{p \in \{1,\dots,m\}}$.

As M is is compact we can consider an open cover of M, $(V_p)_{p \in \{1,...,m\}}$, so that

$$V_p = B_{\frac{\delta_{x_p}}{2}}(x_p) \subseteq B_{3 \cdot \delta_{x_p}}(x_p) \subseteq f_{k_{x_p}}^{-1}((0,1]) \subseteq U_{k_{x_p}},$$
 (5)

where $\delta_{x_p} > 0$ and $k_{x_p} \in \{1, ..., n\}$ are given by (4). We will denote in the following: $\delta_{x_p} = \delta_p$ and $k_{x_p} = k_p$. We consider the family $(V_p, g_p)_{p \in \{1, ..., m\}}$, where

$$g_p^{-1} = h_{k_p}^{-1}|_{V_p} : V_p \subseteq U_{k_p} \to W_p' = g_p^{-1}(V_p) \subseteq \mathcal{X}.$$

• g_p is Lipschitz for all $p \in \{1, ..., m\}$. Indeed, for $X, Y \in W'_p = g_p^{-1}(V_p) = h_{k_p}^{-1}(V_p)$, because $h_{k_p}(X), h_{k_p}(X) \in V_p \subseteq f_{k_p}^{-1}((0, 1])$, we have

$$d(g_{p}(X), g_{p}(Y)) = d(h_{k_{p}}(X), h_{k_{p}}(X)) \leq \frac{1}{\sum_{j \in J(h_{k_{p}}(X), h_{k_{p}}(Y))} f_{j}(h_{k_{p}}(X)) \cdot f_{j}(h_{k_{p}}(Y))} \times \frac{\sum_{j \in J(h_{k_{p}}(X), h_{k_{p}}(Y))} f_{j}(h_{k_{p}}(X)) \cdot f_{j}(h_{k_{p}}(Y))}{\|h_{j}^{-1}(h_{k_{p}}(X)) - h_{j}^{-1}(h_{k_{p}}(Y))\| \leq \frac{\max}{j \in \{1, ..., n\}} \lim_{j \in \{1, ..., n\}} \lim_{j \in J(k_{p}) \neq \emptyset} ||f(h_{k_{p}}(X)) - f(h_{k_{p}}(X)) - f(h_{k_{p}}(X)) - f(h_{k_{p}}(X)) + f(h_$$

Hence, g_p is Lipschitz for all $p \in \{1, ..., m\}$.

• g_p^{-1} is Lipschitz for all $p \in \{1, ..., m\}$

Let us consider first $x, y \in V_p \subseteq f_{k_p}^{-1}((0,1]) \subseteq U_{k_p}, t \in \mathbb{N}^*$ and $x = x_0, ..., x_{t-1}, x_t = y \in M$ so that $x_l \in f_{k_p}^{-1}((0,1])$ for each $l \in \{0, ..., t\}$. If we

denote $J_p = \{ j \in \{1, ..., n\} \mid U_j \cap U_{k_p} \neq \emptyset \}$ and $m = \min_{j \in J_p} \frac{1}{lip(h_{k_p}^{-1} \circ h_j)}$, we have

$$m \cdot \left\| g_p^{-1}(x) - g_p^{-1}(y) \right\| \le m \cdot \sum_{i=1}^t \left\| h_{k_p}^{-1}(x_{i-1}) - h_{k_p}^{-1}(x_i) \right\| =$$

$$= m \cdot \sum_{i=1}^t \frac{1}{\sum_{j \in J(x_{i-1}, x_i) \cap J_p} f_j(x_{i-1}) \cdot f_j(x_i)} \cdot \sum_{j \in J(x_{i-1}, x_i) \cap J_p} f_j(x_{i-1}) \cdot f_j(x_i) \times$$

$$\left\| h_{k_p}^{-1}(x_{i-1}) - h_{k_p}^{-1}(x_i) \right\| = m \cdot \sum_{i=1}^t \frac{1}{\sum_{j \in J(x_{i-1}, x_i) \cap J_p} f_j(x_{i-1}) \cdot f_j(x_i)} \times$$

 $\sum_{j \in J(x_{i-1},x_i) \cap J_p} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_{k_p}^{-1} \circ h_j \circ h_j^{-1}(x_{i-1}) - h_{k_p}^{-1} \circ h_j \circ h_j^{-1}(x_i) \right\| \le$

$$\leq \sum_{i=1}^{t} \frac{1}{\sum\limits_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i)} \cdot \sum_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \times C_{i-1}$$

$$\left\|h_j^{-1}(x_{i-1})-h_j^{-1}(x_i)\right\|.$$

Now, if $x, y \in V_p$, $t \in \mathbb{N}^*$ and $x = x_0, ..., x_{t-1}, x_t = y \in M$, so that $J(x_{i-1}, x_i) \neq \emptyset$ for all $i \in \{1, ..., t\}$, there are two cases:

A:

$$\sum_{i=1}^{t} \frac{1}{\sum\limits_{j \in J(x_{i-1}, x_i)} \int f_j(x_{i-1}) \cdot f_j(x_i)} \times \sum_{j \in J(x_{i-1}, x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_j^{-1}(x_{i-1}) - h_j^{-1}(x_i) \right\| \le \delta_p$$

and B:

$$\sum_{i=1}^{t} \frac{1}{\sum_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i)} \times \sum_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_j^{-1}(x_{i-1}) - h_j^{-1}(x_i) \right\| > \delta_p.$$

For the case A, let us observe that for each $l \in \{1, ..., t\}$

$$d(x,x_{l}) \leq \sum_{i=1}^{l} \frac{1}{\sum\limits_{j \in J(x_{i-1},x_{i})} f_{j}(x_{i-1}) \cdot f_{j}(x_{i})} \times$$

$$\sum_{j \in J(x_{i-1},x_{i})} f_{j}(x_{i-1}) \cdot f_{j}(x_{i}) \cdot \left\| h_{j}^{-1}(x_{i-1}) - h_{j}^{-1}(x_{i}) \right\| \leq$$

$$\leq \sum_{i=1}^{t} \frac{1}{\sum\limits_{j \in J(x_{i-1},x_{i})} f_{j}(x_{i-1}) \cdot f_{j}(x_{i})} \times$$

$$\sum_{j \in J(x_{i-1},x_{i})} f_{j}(x_{i-1}) \cdot f_{j}(x_{i}) \cdot \left\| h_{j}^{-1}(x_{i-1}) - h_{j}^{-1}(x_{i}) \right\| \leq \delta_{p}.$$

Then, for each $l \in \{1, ..., t\}$

$$d(x_l, x_p) \le d(x_l, x) + d(x, x_p) < \delta_p + \delta_p = 2 \cdot \delta_p,$$

because $x \in V_p \subseteq B_{\delta_p}(x_p)$. Hence, according to (5), $x_l \in B_{2 \cdot \delta_p}(x_p) \subseteq B_{3 \cdot \delta_p}(x_p) \subseteq f_{k_p}^{-1}((0,1])$, for all $l \in \{0,...,t\}$. Taking into account the calculations made above, we have

$$\left\|g_{p}^{-1}(x) - g_{p}^{-1}(y)\right\| \leq \frac{1}{m} \cdot \sum_{i=1}^{t} \frac{1}{\sum_{j \in J(x_{i-1}, x_{i})} f_{j}(x_{i-1}) \cdot f_{j}(x_{i})} \times (6)$$

$$\sum_{j \in J(x_{i-1}, x_{i})} f_{j}(x_{i-1}) \cdot f_{j}(x_{i}) \cdot \left\|h_{j}^{-1}(x_{i-1}) - h_{j}^{-1}(x_{i})\right\|$$

For the case B, as $d(x,y) \leq d(x,x_p) + d(x_p,y) < \delta_p$, there is $s \in N^*$ and $x = x_0',...,x_{s-1}',x_s' = y \in M$ such that $J(x_{i-1}',x_i') \neq \emptyset$ for all $i \in \{1,...,s\}$ and

$$\sum_{i=1}^{s} \frac{1}{\sum\limits_{j \in J(x'_{i-1}, x'_{i})}^{} f_{j}(x'_{i-1}) \cdot f_{j}(x'_{i})} \times \sum_{j \in J(x_{i-1}, x_{i})}^{} f_{j}(x'_{i-1}) \cdot f_{j}(x'_{i}) \cdot \left\| h_{j}^{-1}(x'_{i-1}) - h_{j}^{-1}(x'_{i}) \right\| < \delta_{p}.$$

Then, according to the case A, we have

$$\left\|g_p^{-1}(x) - g_p^{-1}(y)\right\| \le \frac{1}{m} \cdot \sum_{i=1}^{r} \frac{1}{\sum\limits_{j \in J(x'_{i-1}, x'_{i})} f_j(x'_{i-1}) \cdot f_j(x'_{i})}$$

$$\sum_{j \in J(x_{i-1},x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_j^{-1}(x_{i-1}') - h_j^{-1}(x_i') \right\| <$$

$$< \frac{\delta_p}{m} < \frac{1}{m} \cdot \sum_{i=1}^t \frac{1}{\sum\limits_{j \in J(x_{i-1}, x_i)} f_j(x_{i-1}) \cdot f_j(x_i)} \times \sum_{j \in J(x_{i-1}, x_i)} f_j(x_{i-1}) \cdot f_j(x_i) \cdot \left\| h_j^{-1}(x_{i-1}) - h_j^{-1}(x_i) \right\|$$

so, the inequality (6) is valid also for the case B. Therefore, the inequality (6) implies that

$$||g_p^{-1}(x) - g_p^{-1}(y)|| \le \frac{1}{m} \cdot d(x, y)$$

for all $x, y \in V_p$, which permits us to conclude that g_p^{-1} is Lipschitz for all $p \in \{1, ..., m\}$.

References

- [1] N. Aronszajan Differentiability of Lipschitz functions in Banach spaces, Studia Math., 57 (1976), 174-160.
 - [2] J. Luukkainen & J. Väisäla Elements of Lipschitz topology, Ann. Acad. Sci. Fenn. Ser A. I. Math., 3 (1977), 85-122.
 - [3] H. Rademacher Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, *Math. Ann*, 79(1919), 340-359.
 - [4] D.Sullivan Hyperbolic geometry and homeomorphisms, Geometric-Topology: Proc. Topology Conf. at Athens, 1977, J.C. Cantrell, editor, Academic Press, New York, London, 1979, 543-555.
 - N. Teleman The index of the signature operator on Lipschitz manifolds, *Publ.Math. IHES*, 58 (1983), 39-78.

Radu Miculescu

Universitatea din București, Facultatea de Matematică Strada Academiei 14, 70109 Bucharest, ROMANIA E-mail: miculesc@math.math.unibuc.ro