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connected manifolds
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Abstract - In this paper we present an alternative definition for
Lipschitz manifolds, modelled in a real normed space.
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1 Introduction

The purpose of this paper is to show that for a compact connected Lipschitz
manifold modelled on a real normed space, the definition based on atlases
is essentialy the same with the following: such a manifold is a metric space
that locally is Lipschitz equivaient to an open set {rom the modelling space.

The initial motivation for our work comes from [2] where the correspond-
ing result for LIP-n manifolds is given.

In the following we will be more precisely. First let us recall some basic
facts.

DerFINITION 1 If (X,d) and (Y,d) are metric spaces, a map f: X — Y is
said to be Lipschitz, if there is a constant M > 0 such that d {f{z), f(y}) <
M-d(z,y) for all z,y in X and lip(f) is defined as the least such a constant.
If every z € X has a neighborhood U such that fiy is Lipschiiz, f is said to
be locally Lipschitz { abbreviated LIP ).

REMARK 1 [ntuitively speaking, a Lipschitz { LIP ) map is one that obeys (
temporary ) speed limits.

THEOREM 1 (RADEMACHER, see {3]) . If U is an open set in R® and f :
U —= R™ is a Lipschitz map , then f is differentiable oulside of a Lebesgue
null subset of U,

53



54 _ R. MICULESCU

Now we define the Lipschitz { LIP ) manifolds.

DEFINITION 2 (see [5], p. 42) A compact, oriented, n-topological manifold
M, without boundary, is a Lipschitz menifold, if there is a family (U;, hi)ier,
where (U;};er is an open cover of M, h; : U; — V; C R” is a homeomorphism
from U; onto an open subset V; of R® and fa;ohj_l shi(UinUj) = hi(UsinU;)
are Lipschitz for all i,7 € I,U;NU; # 0.

DEFINITION 3 (see {2], p. 97 ) A LIP n-manifold is a Hausdorff topological
space M, such that there is a family (U, hidier , whem (Vi)ier is an open
cover of M, b, : U; — U s a homeomorphism, U being open either in
R™ or RL . cmd hi o byt s hy(Ui N U;) — hi(U; DU) are LIP for all
Lije LU N #£d.

The key features of a Lipschitz { LIP ) manifold are that, on one hand it
seems to be only slightly weaker than a smooth structure, so that one can still
do analysis with it ( see [5] ), and yet essential uniqueness of this structure
ix almost automatic in many situations, that are very far from being smooth
i see [4] ).

{r [2} it is proved, using strong results, like an embedding theorem or
a =pecial case of a metrization theorem for locally metric spaces, that, for
second countable spaces, Definition 3 is essentially the same with:

DEFINITION 4 (see [2], p. 97 ) A LIP n-manifold is a separable metric space
Af. sueh that every point & € M has a closed neighborhood U,. for which there
is a bijection f, : U, — [—1,1]"%, such that fr and f;! are LIP.

In this paper we give, by a direct proof, using no other results, a similar
alternative definition for compact connected Lipschitz manifolds, modelled
on a real normed space { see theorem below }.

2 The result

THEOREM 2 Lei X' be a real normed space. Then the following statements
arc equivalent:

) M is a compact, connected, topological space, for which there exists a
family (1 ke, mp 7 € N*, where (Uj)jeis,..n} 1S an open cover

Q
of M and h; : W; =W;C X — U; is a homeomorphism for all j €
. n}, such that b7 oh; :h;-'l(U.-ﬂUj) — AN UiNU;) is Lipschitz
Joralli,je{1,..,n}, sothat U;nU; #£ 0.
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For the case A, let us observe that for each [ € {1,...,¢}
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Then, for each [ € {1, ..., ¢}

IA

d(z, x?) < d(ﬂ.‘g,x') + d(z,:rp) < 5? + 5? =2 6?1

because r € V, C Bj,(zp). Hence, according to (5), x1 € Ba4,(zp) C
Bz.s,(zp) C f,;;l(((i, 1]}, for all I € {0, ...,t}. Taking into account the calcu-
lations made above, we have
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jeJ(zi—1,xi)

Y i) fi(@) - B (mimn) — A7 (@)
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For the case B, as d(z,y) < d(z, 2p) + d(zp, ¥) < &, there is s € N* and
T = Tg,eyTy1,%y = §¥ € M such that J(z;_,,z]) # B for all i € {1,...,5}
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Then, a,céQrding to the case A, we have
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