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Abstract. This paper debates upon the distributed encryption by us-
ing formal methods from language theory. After some basic properties of
distributed encryption systems were presented, we have pointed out possible
applications in cryptography by constructing an authentication system based
on hidden channels.

1 Introduction

So far, a few results and methods in formal language theory have been used for
the security of conveyance messages. Along these lines, there were investigated
some public-key cryptosystems based on language theory (iterated morphisms and
substitution, hiding regular languages, etc.) A survey and more details can be found
in [7] and the references thereof.

However, our opinion is that the central concept in hiding messages, that of
replacing some sequences by another ones, is very common in language theory. To
substitute some subwords of a word with other strings in the aim of hiding the
original message is one of the well-known techniques in cryptography. A substitution
can be viewed as a production of the form x → y where the words x, y are given;
to apply such a substitution to a given text w all non-overlapped occurrences of x
are simultaneously replaced by y. Thus, different texts are obtained, according to
different decompositions of w with respect to x [4]. The present paper continues a
series of papers [3], [4], [1], [2] dealing with cryptosystems based on substitution.
Here we study the way of encrypting by distributed systems and we discuss on the
possibility to construct an authentication system based on hidden channels [8].
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The topic seems to be very generous and attractive; in this paper we exploit just
one result presented at the end of the third section by developing an authentication
method. Nevertheless, the reader may construct other methods whose implementa-
tion requires simple devices as finite automata or generalized sequential machines.

2 Preliminaries

An alphabet is a finite nonempty set; if V = {a1, a2, . . . , an} is an alphabet, then
any sequence w = ai1ai2 . . . aik , 1 ≤ ij ≤ n, 1 ≤ j ≤ k, is called word (string) over
V . The length of the aforementioned word w is denoted by |w| and equals k. The
empty word is denoted by e, |e| = 0. The set of all words over V is denoted by V ∗

and V + = V ∗ − {e}.
For two words x, y we denote by Nx(y) the number of occurrences of x in y, that

is
Nx(y) = card({α|y = αxβ}),

and extend this notation to a finite nonempty set A

NA(y) =
∑

x∈A

Nx(y).

Note that we count all different occurrences of x, including the overlappings. Let
V be an alphabet and P ⊂ V ∗ × V ∗ be a finite nonempty set of encryption rules
written in the form x → y, x, y ∈ V ∗. Denote by dom(P ) the set {x|x → y ∈ P}
and P−1 = {y → x|x → y ∈ P}.

For w ∈ V ∗, the encryption of w by means of P is the set

w(P ) = {z0y1z1y2 . . . zn−1ynzn| for some n ≥ 1},

where

(i) w = z0x1z1x2 . . . zn−1xnzn,

(ii) xi → yi ∈ P, 1 ≤ i ≤ n,

(iii) Ndom(P )(zj) = 0, for any 0 ≤ j ≤ n.

Furthermore, for a set A ⊂ V ∗

A(P ) =
⋃

w∈A

w(P ),

∅(P ) = ∅.

A distributed encryption scheme of degree n ≥ 1 is a structure

γ = (V, P1, P2, .., Pn),
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where V is an alphabet and Pi ⊂ (V ∗×V ∗) are finite and nonempty sets of encryption
rules, for all 1 ≤ i ≤ n. Let π be a permutation of the set {1, 2, . . . , n} and w ∈ V +

be a string over V . We define

CTγ(w, π) = w(Pπ(1))(Pπ(2)) . . . (Pπ(n))

the set of all cryptotexts (the cryptoset) of the plain text w, by means of γ, based
upon the permutation π. Moreover, Sn is the set of all permutations of {1, 2, . . . , n}.

Example 1 Consider V = {a, b, c, d}, P1 = {ab → cd, b → a, aa → d}, P2 = {ac →
c, ab → a} and w = abab. There are only two permutations of {1, 2}; the cryptosets
based on the two permutations are:

abab(P1)(P2) = {cdcd, aacd, cdaa, aaaa}(P2) = {acd}
abab(P2)(P1) = {aa}(P1) = {d}.

A distributed encryption system of degree n is the structure

Γ = (V, P1, P2, . . . , Pn, A),

where γ = (V, P1, P2, . . . , Pn) is a distributed encryption scheme of degree n and
A ⊆ V ∗ is the plain (initial) language. The cryptolanguage defined by Γ and the
permutation π ∈ Sn is

CLΓ(π) =
⋃

x∈A

CTγ(x, π).

In what follows, we restrict our investigation to encryption systems whose plain
language is either finite or regular.

3 Basic properties of distributed encryption sys-

tems

Theorem 1 Let Γ = (V, P1, P2, . . . , Pn, A) be a distributed encryption system with
a finite/regular plain language A. For each permutation π ∈ Sn there exist the
morphisms h1, h2 and the finite/regular language R such that

CLΓ(π) = h2(h
−1
1 (h2(h

−1
1 (. . . h−1

1 (h2(h
−1
1 (A) ∩R)) ∩R)) ∩ . . . ∩R)).

Proof. We consider the new alphabets V (i), 1 ≤ i ≤ n, where

V (i) = {a(i)|a ∈ V }.

Furthermore, x(k) = a
(k)
1 a

(k)
2 . . . a(k)

q provided that x = a1a2 . . . aq, ai ∈ V, 1 ≤ i ≤ q.
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Assume that
Pj = {xj,t → yj,t|1 ≤ t ≤ rj}.

Let ci,1, ci,2 . . . , ci,ri
new symbols, for all 1 ≤ i ≤ n. Define the morphisms

h1 :
n⋃

i=1

V (i) ∪
n⋃

i=1

{ci,1, ci,2 . . . , ci,ri
} −→ V ∪

n−1⋃

i=1

V (i),

defined as follows

h1(a
(1)) = a, a ∈ V,

h1(a
(i)) = a(i−1), a ∈ V, 2 ≤ i ≤ n,

h1(cπ(1),j) = xπ(1),j, 1 ≤ j ≤ rπ(1),

h1(cπ(i),j) = x
(i−1)
π(i),j, 2 ≤ i ≤ n, 1 ≤ j ≤ rπ(i),

and

h2 :
n⋃

i=1

V (i) ∪
n⋃

i=1

{ci,1, ci,2 . . . , ci,ri
} −→ V ∪

n−1⋃

i=1

V (i),

with

h2(a
(i)) = a(i), a ∈ V, 1 ≤ i ≤ n− 1,

h2(a
(n)) = a, a ∈ V,

h2(cπ(i),j) = y
(i)
π(i),j, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ rπ(i),

h2(cπ(n),j) = yπ(n),j, 1 ≤ j ≤ rπ(n).

If A is a finite set, put

p = max{|x| : x ∈ A}
q = max{|x| : x ∈

n⋃

i=1

dom(P−1
i )}.

The language R required by the theorem is

R =





⋃n
i=1(((V

(i))∗ \ (V (i))∗dom(i)(Pπ(i))(V
(i))∗){cπ(i),1, cπ(i),2, . . . , cπ(i),rπ(i)

})∗,
if A is a regular language

⋃n
i=1((((V

(i))∗ \ (V (i))∗dom(i)(Pπ(i))(V
(i))∗){cπ(i),1, cπ(i),2, . . . , cπ(i),rπ(i)

})∗∩
∩(V (i))pqi

), if A is a finite set,

where V (k) delivers the set of all strings of length at most k. It is easy to notice that R
is finite/regular provided that A is finite/regular. Let w be an arbitrary string in A.
All strings in h−1

1 (w) are obtained from w by replacing some of its substrings xπ(1),j
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with cπ(1),j and all the remained symbols with their associated symbols “coloured”
by the “colour 1”. The intersection with the language R controls this process,
namely it removes all strings which contain “coloured” substrings x

(1)
π(1),j, for some

1 ≤ j ≤ rπ(1). Thus, h2(h
−1
1 (w) ∩ R) contains exactly the “coloured” copies of the

strings in w(Pπ(1)). An inductive reasoning completes the proof. 2

Due to the closure properties of the family of regular sets and to the previous
theorem one may state:

Corollary 1 If Γ is a distributed encryption system of degree n whose plain language
is regular, CLΓ(π) is a regular set, for all permutations π ∈ Sn.

Returning to the aim of introducing the distributed encryption systems, we foc-
cus our attention to an important feature that may be required for encryption sys-
tems, that of reversibility.

A distributed encryption system Γ = (V, P1, P2, . . . , Pn, A) is weakly reversible if
exists a permutation π ∈ Sn such that

A ⊆ A(Pπ(1))(Pπ(2)) . . . (Pπ(n))(P
−1
π(n)) . . . (P−1

π(1)).

The same encryption system is strongly reversible if exists a permutation π ∈ Sn

such that
A = A(Pπ(1))(Pπ(2)) . . . (Pπ(n))(P

−1
π(n)) . . . (P−1

π(1)).

A complete characterizations of reversible distributed encryption systems seems very
difficult to be reached. However, both properties are decidable for every distributed
encryption system, whatever plain language it has.

Theorem 2 One can algorithmically decide whether or not a given distributed en-
cryption system is weakly or strongly reversible.

Proof. The problem is trivialy decidable for systems having a finite plain language.
In the case of systems with regular plain languages, the statement follows imme-
diately from the decidability status of the inclusion and equivalence problems for
regular languages. Note that the crypto-language defined by a distributed encryp-
tion system with a regular plain languages can effectively be constructed. 2

Theorem 3 The distributed encryption system Γ = (V, P1, . . . , Pn, A) is weakly re-
versible if exists a permutation π ∈ Sn such that for each 0 ≤ i ≤ n− 1

Ai ⊆ Ai(Pπ(i+1))(P
−1
π(i+1)),

where A0 = A and Ai = A(Pπ(1)) . . . (Pπ(i)).
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Proof. Without loss of generality one may assume that the permutation π is the
identical one. We proceed by induction on n. For n = 1 the assertion is immediately
true from the definition of weakly reversability. Assume the assertion true for all
distributed encryption systems of degree k and let Γ = (V, P1, P2, . . . Pk+1, A) be an
encryption system of degree k + 1. By the induction hypothesis one may infer that

A ⊆ Ak(P
−1
k ) . . . (P−1

1 ).

As Ak ⊆ Ak(Pk+1)(P
−1
k+1), we may write

A ⊆ Ak(P
−1
k ) . . . (P−1

1 ) ⊆ Ak(Pk+1)(P
−1
k+1)(P

−1
k ) . . . (P−1

1 ) ⊆
⊆ A(P1)(P2) . . . (Pk+1)(P

−1
k+1)(P

−1
k ) . . . (P−1

1 ),

which ends the proof. 2

A similar sufficient condition holds for strongly reversible distributed encryption
systems as well. Unfortunately, this condition, despite that it is just sufficient, does
not appear to be essentialy simpler than the definition. On the other hand, if we
restrict the investigation to encryption systems of degree one with one encryption
rule only (parallel substitution [4]), the reversibility of the system implies a very
special plain language ([5]). By increasing either the degree of the system or the
number of encryption rules, in order to preserve the reversability property, we have
to limit strictly the form of the initial language.

These considerations led us to consider a different way of decryption the crypto-
language. To this end, we consider that the legal receiver knows the distributed
encryption scheme of the sender and has to figure out the maximal language (with
respect to inclusion) that leads to the received language by applying the encryption
scheme to it. Note that this problem is completely different of the reversibility
problem. The problem will be treated in more detail in the next section.

Obviously, the first question that naturally arises is: Can the receiver algorith-
mically determine the maximal language? Clearly, the answer is affirmativ if the
crypto-language is finite. The case of regular crypto-languages is settled by the next
theorem

Theorem 4 Let γ = (V, P1, P2, . . . , Pn) be a distributed encryption scheme, R be
a regular set and π be a permutation in Sn. The maximal language A such that
CLΓ(π) = R, Γ = (γ,A), can algorithmically be constructed.

Proof. For the set of encryption rules P over the alphabet V and the string w ∈ V ∗

denote by

w < P > = {w0y1w1y2 . . . ykwk|w = w0x1w1x2 . . . xkwk, for some k ≥ 1,

xi → yi ∈ P, 1 ≤ i ≤ n, and Ndom(P−1)(wj) = 0, 0 ≤ j ≤ k}.
The algorithm we are going to present is based on the following two facts:
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1. If y ∈ x < P >, then x ∈ y(P−1).

2. If x ∈ y(P ), then y ∈ x < P−1 >.

Again, for sake of simplicity we assume that the permutation π is the identical
permutation.

Algorithm 1

Input: The encryption scheme γ and the regular set R;

Output: The maximal plain language A.

begin

A := R;

for i := n downto 1 do

begin

E := A < P−1
i >;

F := E(Pi);

if F = A then A := E

else

begin

Q := F \ A;

M := Q < P−1
i >;

F ′ := E \M ;

if A = F ′(Pi) then A = F ′

else “THE PROBLEM HAS NO SOLUTION”; stop

end;

end;

end.

Owing to the two facts mentioned at the beginning of this proof it follows that
at each step i the algorithm computes, if exists, the maximal set L such that R =
CLΓ′(ε

′), where

(i) Γ′ = (V, P ′
1, P

′
2, . . . , P

′
n−i+1, L),

(ii) P ′
j = Pi+j−1, 1 ≤ j ≤ n− i + 1,

(iii) ε′ is the identical permutation of {1, 2, . . . , n− i + 1}.
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Indeed, at each step i, F ′(Pi) ⊆ A holds, and F ′ is maximal with this property.
The above remarks prove the correctness of the algorithm provided that all its

instructions can be effectively performed. For a regular language R and a set of
encryption rules P both sets R < P > and R(P ) are regular sets which can be
effectively constructed. R(P ) can be constructed following the proof of Theorem 1
whereas R < P > is the image of a gsm mapping applied to R. The reader can easily
construct such a gsm. Moreover, the difference of two effective regular languages is
still an effectiv regular language. For more details, we refer to [6]. 2

4 Authentication based on distributed encryption

systems

Theorem 4 can be used as starting point for building an authentication system as
we are going to do in the following. Let γ = (V, P1, P2, . . . , Pn) be a distributed
encryption scheme and R be a regular language. As we have seen in Theorem 4, one
may figure out a maximal set A such that CTγ(A, π) = R, for some π ∈ Sn. Now,
we proceed as follows:

• We choose an alphabet V ′ with V ⊂ V ′.

• We enrich the sets Pi up to P ′
i , for all 1 ≤ i ≤ n.

• Let k ≥ 0 be an arbitrary integer. We define the permutation π′ ∈ Sn+k that
extends, in some sense, the permutation π. Thus, if π′(i) = π(j), π′(l) = π(s)
and j < s, then i < l holds.

• We construct the new sets of encryption rules P ′
n+1, . . . , P

′
n+k satisfying the

properties

– if π′(i) ≤ n, then Ai := Ai−1(P
′
π′(i));

– if π′(i) > n, then Ai := Ai−1(P
′
π′(i)) = Ai−1;

for all 1 ≤ i ≤ n + k and A0 := A.

• Let R′ be an infinite regular language that includes R (usually, R is finite). Let
A′ be the maximal set computed by the algorithm from Theorem 4 starting
with γ′ = (V ′, P ′

1, P
′
2, . . . , P

′
n+k), R′ and π′. Obviously, A ⊂ A′.

The distributed encryption system Γ′ = (V ′, P ′
1, P

′
2, . . . , P

′
n+k, A

′) and the per-
mutation π′ are public whilst Γ = (V, P1, P2, . . . , Pn, A) and π are secret. Everybody
may encrypt a message in A′ and send the cryptotext to a receiver. The receiver
checks whether the received text is in R (this can be algorithmically done because
R is regular). In accordance with the answer, the receiver either rejects the message
or accepts and decodes it within the system Γ.
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Example 2 Let γ = (V, P1, P2), where

V = {a, b, c}, P1 = {a → cb, b → a}, P2 = {aba → ab, bab → ba}.

If π = (2, 1) and R = {cbaa, acba, acbcb}, then the maximal language obtained by
Algorithm 1, starting from R and γ is

A = {abab, baba, babb}.

Following the above considerations, we take:

V ′ = {a, b, c, d}, k = 1, π′ = (2, 3, 1),

P ′
1 = P1 ∪ {bc → bc},

P ′
2 = P2 ∪ {c → bcb, ab → bcb, ba → adb, d → da},

P ′
3 = {abb → aba, aba → abb, bab → baa, baa → bab, adb → acb}.

The choice of a certain permutation does not introduce any ambiguity in the
system due to the following remarks. A set of words A is uniquely encrypted by the
distributed encryption scheme γ = (V, P1, P2, . . . , Pn) if exists a permutation π ∈ Sn

such that the next two conditions hold:

1. CTγ(A, π) 6= ∅,
2. CTγ(A, σ) = ∅, for all σ ∈ Sn \ {π}.

Theorem 5 Let γ = (V, P1, P2, . . . , Pn) be a distributed encryption scheme, A is a
set of words over V such that CTγ(A, ε) 6= ∅. Then, there is a distributed encryption
scheme γ′ such that A is uniquely encrypted by γ′.

Proof. One defines the new alphabets Vi = {ai|a ∈ V }, 1 ≤ i ≤ n, where Vi ∩ V =
Vi ∩ Vj = ∅, i 6= j. Then, one defines the encryption scheme

γ′ = (V ′, P ′
1, P

′
2, . . . , P

′
2n+1),

where

V ′ = V ∪ V1 ∪ V2 ∪ . . . ∪ Vn,

P ′
1 = {a → a1|a ∈ V }, P ′

2n+1 = {an → a|a ∈ V },
P ′

2k = {hk(x) → hk(y)|x → y}, 1 ≤ k ≤ n,

P ′
2k+1 = {ak → ak+1|a ∈ V }, 1 ≤ k ≤ n− 1.

The morphisms hk, 1 ≤ k ≤ n, are defined from V ∗ into V ∗
k by hk(a) = ak, for all

a ∈ V . It is easy to notice that each set P ′
2k is applicable only between P ′

2k−1 and
P ′

2k+1; consequently A is uniquely encrypted by γ. 2
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