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Chapter 1

Introduction

During the past few decades as well as in the present days, the microclectronics crucially depends on the control
over impurity doping and structural defecats in semiconductors. Since in the process of doping point defects may
appear, i1 is cssential 1o know how they affccl the encrgy spectrum of host maierial.

PPoint defects can be of several types:

-substitutional impurities with non-isovalent neighbors who may hecome donor or acceptor; depending on
their positon inside the band gap, one can lfurther classily them into shallow or deep donors (aceeplors).

-isovalent impuries which may have caplure state and which patiern life Gme of nonequilibrium carriers

-vacancics and interstitial dopants (intrinsic defects) which may be of the same nature as malerial aloms or
different, These, although they may have a strong doping characler are thermally unstable and is (cchnologically
inefficient.

In this work we studied vacancies, like Vy in aluminium nitride and Vg in horon nitride, substitutional
impurities, such as aluminium nitride doped with germanium and boron nitride doped with carbon, and complex
defeets in these two structures.

In order to find the differences in the band structure, between the ideal bulk systems and the ones mentioned
ahove, we cmploy DUT (Density Functional theory) calculations in a super-cell framework,  As numgcrical
method to be used in this work we have chosen SILESTA (Spanish Initiative for Llectronic Simulations with

Thousands of Atoms), which has the major advantage that it scales linearly with the number of atoms.
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Chapter 2

Density functional theory

Density functional theory is a theory of correlated many-body systems. It is included here in close association
with independent-particle methods, becausc it has provided the key siep that has made possible development
ol practical, usciul independent-particle approaches that incorporate effects of interactions and corrclations
among the particles. As such, density functional theory has become the primary tool for calculation of elec-
tronic structure in condensed matter, and is increasing important for quantitative studies of molecules and other
finite systems. ‘The remarkable successes of the approximalte local density (LDA) and genceralized-gradient
approximation (GGA) [unctionals within the Kohn-Sham approach have led (o widespread interest in density
functional theory as the most promising approach for accurale, practical methods in the theory of malerials, The
original density functional thecory of quantum systems is the method of Thomas and Termi proposed in 1927,
Although their approximation is not accurate enough for present-day electronic structure calculations, the ap-
proach illustrates the way density functional theory works. In the original Thomas-l'ermi method the kinetic
energy ol the system electrons is approximated as an explicit functional of density, idealized as non-interacting
clectrons in a homogencous gas with density equal o the local density at any given point. Both Thomas and
I'ermi neglected exchange and correlation among the clectrons; however, this was extended by Dirac in 1930,
who formulatcd the local approximation for cxchange still in usc today.

The attraction of density functional theory is evident by the fact that one equation tor the density is re-
markably simpler than the full many-body Schrodinger equation that involves 3N degrees of treedom for N
clectrons. The Thomas-Fermi type approach has been applied 0 equatons of state of the elements. However,
the Thomas-Fermi-lype approach starts with approximations that are o crude, missing essential physics and
chemistry, such as shell structures of atoms and binding of moelecules. DIFT was put on a firm theorctical footing

by the two TTohenberg-Kohn theorems, [2]

2.1 The Hohenberg-Kohn Theorems

‘The Hohenberg-Kohn theorems relate 10 any system consisting of electrons moving under the influence of an
exlernal potential v (r) Stated simply they are as follows:
Theorem 1
The external potential v, (#),and hence the total energy, is a unique functional of the electron density a(r).
The energy tunctional £|n(r)| alluded to in the first [lohenberg-Kohn theorem can be written in terms of

the external potential v (r) in the following way

Eln(ry] = /ln(r)\-'(i\»t(r_)dr | Fla(r)], 2.0
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where Fla(r)| is an unknown, but otherwise universal functional of the clectron density #{r) only, Corre-
spondingly, a Hamiltonian for the system can be written such that the electron wavetunction y that minimizes

the expectation value gives the groundstate energy (assuming a non-degenerate groundstate)

Eln{r) =< w|H|y > (2.2)
The TTamiltonian can be written as

~ o~

H F V., 2.3)

where £ is the clectronic Hamiltonian consisting ol a kinelic energy operator 1 and an interaction operator

Vee

FoT+v, (24)

The electron operator F is the same for all N-electrons systems, so A is completely defined by the number
of clectrons N, and the external potential vy (£).

The prool of the first theorem is remarkably simple and proceeds by reductio ad absurdum. Let there be
(two different external potentials, veq. (£} and veg 2(#). that give rise o the same density no(#). The associated
TTamiltonians, Hjand s, will therefore have different groundstate wavefunctions, wiand s, that cach yicld

io{r). Using the variational principle, together with 1igs. 2.3 and 2.4, vields

El < <wlfhlya > <wl|fbly, >+ <w|fh -y > E54+ /fl(](")l-’pxt.] (F) = vewa2(r)|dr  (2.5)

where E? and FY arc the groundstate cnergics of 1) and Fiy respectively, Tt is at this point that the
[Hohenberg-Kohn theorems, and theretore DT, apply rigorously to the groundstate only. An equivalent ex-
pression for lig. 2.5 holds when the subscript are interchanged. Therefore adding the interchanged inequality

o Eq. 2.5 leads o the tesult:
EYVEY <ES TR (2.6)

results in which is a contradiction, and as a result the groundstate density unigquely determines the exlernal
potential v (7).to within an additive constant. Stated simply, the electrons determine the positions of the
nuclei in a system, and also all groundstate electronic properties, because as mentioned earlier, v, (r}and N
completely define A.

Theorem 2

The groundstate energy can be obtained variationally: the density that minimizes the total energy is
the exact groundstate density.

The prootf of the second theorem is also straightforward: as just down, n(r) determines v,,, (7} determine H
and therefore .

This ultimately means ¥ is a functional of #(r), and so the expectation value of £ is also a functional of

n(r), ic.
Flair)] =< wl£|y >

A density that is the ground-state of some external potential is known as v-representable. I'ollowing from

this, a v-representable encrgy funcional £, [n(r)] can be defined in which the external potential v{r) is unrelated
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(o another density f‘l’(f')‘

n{r)| / . 0 (F)vealPdr + F \n’ ()|
and the variational principle asserts
<Y EY > | < VW >><wlEly > | < ylVo |y >
where y is the wavefunction associated with the correct groundstate a(r). This lcads (o
/ ‘ 1 (P (F)dr + Fli (7)) > / }:.(r)a,;u,_, (rydr + Fln(r}|
and so the variational principle of the second Hohenberg-Kohn theorem is oblained,

Euln () > E,

a{r)

Although the TTohenberg-Kohn theorems are extremely powerlul, they do not offer a way of compulting the

ground-state density of a system in practice,

2.2  The Kohn-Sham Formulation

Within the framework of Kohn-Sham DITI, the intractable many body problem of interacting electrons in a
static external potental is reduced o a tractable problem of non-interacting electrons moving in an effective
potential. The elffective potential includes the external potential and the effects of the Coulomb interactiones
between the clectrons, the exchange and corrclation interactions. Modelling the latter (wo interactions comes
the difficulty within KS DI'T. The simplest approximation is the local-density approximation(I.DA), which
is based upon exact exchange energy tor a uniform electron gas, which can he obtained from the Thomas-
I'ermi model, and from fits to the correlation energy tor a uniform electron gas. Non-interacting systems are
relatively casy o solve as the wave unction can be represented as a Slater determinant of orbitals. Further, the
kinetic energy functional of such a system is known exaclly. The exchange-correlation part of the total-energy
functional remains unknown and must he approximated. [2]

The Kohn-Sham approach is (o replace the difficult inleracting many-body sysicm obeying the Hamiltonian
with a different auxiliary system that can be solved more easily. Since there is no unique prescription tor
choosing the simpler auxiliary system, this 1s an ansatz that replace the issues. ‘The ansatz of Kohn and Sham
assumes that the ground state density of the original inleracting system is equal o that the of some chosen
non-interacting system, This leads (o independent-particle equations for the non-interacting system thal can
be considered cxactly soluble with all the difficult many-body terms incorporated into an cxchange-correlation
functional of the density. By solving the equations one finds the ground state density and energy of the original
interacting system with the accuracy limited only by the approximations in the exchange-correlation tunctional.
Here we will consider the Kohn-Sham ansatz {or the ground state, which is by far the most widespread way
in which the theory has been applied. The fundamental theorems of density functional theory show that in
principle the ground state density determines everything. [1]

The Kohn-Sham ansalz rests upon two assumplions:

[ The exact ground state density can be represented by the ground state density of an auxiliary system of

non-interacting particles. This is called “non-interacting-V- representability”, although there are no rigorous
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proofs for rcal systcm of interest, we will proceed assuming its validity. This leads to the relation of the actual
and auxiliary system shown in 171g.2. ]

2/The auxiliary Hamiltonian is chosen to have the usual kinetic operator and an eftective local potential

(o3

Vers

uselul simplification that is often taken as the defining charactleristic of the KS approach. We assume that the

{r) acting on an cleciron of spin ¢ at point r. The local form is not essential[ 1], but it is an extremely

cxternal potential Vg is spin independent[2]; nevertheless, excepl in cascs that are spin symmetric, the auxiliary

eflective potential V(¢ )must depend upon spin in order give the correct density for cach spin,

G R )

p

¥, ({r})

Wy ({rh)

Iigure 2.1: Schematic representation of KS ansatz. The notation H Kpdenotes the 1lohenberg-Kohn theorem
applicd o the non-interacting problem. The wrow labeled KS provides the connection in both directions be-
tween the many-body and independent-particle systems, so that the arrows connect any point o any other point.
Therelore. in principle, solution of the independent-particle Kohn-Sham problemn determines all propertics of
the full many-hody systcm.

‘The actual caleulations are performed on the auxiliary independent-particle system defined by the auxiliary

Tamilonian (using Hartree atomic units & m, ¢ 3 1)

X

HS —%VZ | VO(r)

At this point the form of VZ{r)is not specitied and the expressions nmst apply for all VZ(#} in some range, in
order to define functionals for a range of densities. Ior a system of N N~ | N-independent electrons obeying
this Hamiltonian, the ground state has one clectron in cach of the N%orbitals w7 {r)with the lowest cigenvalues

¢ ol the Hamilionian [1]. The density of the auxiliary system is given by sums of squares of the orbitals for

cach spin

n(r) Z}’l(f a) Z |y (1)

the independent-particle kinetic energy 7, is given by

JV = l I’V a

Z*—E):Kw, Vi >= s LY Vv

[

and we define the classical Coulomb interaction energy of the electron density n(r) interacting with itsell

/d3 q,n n(r’)
r=rl

The Kohn-Sham approach 1o the full interacting many-body problem is o rewrite the Hohenberg-Kohn

EH artree ‘ R ‘ ;

expression for the ground state energy functional in the form

Frs Tl | / AV (M) | Etapireelt] 1 Fii + Exeln]
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TTere V., (#)is the external potential due to the nuclei and any another external ficlds (assumed to be inde-
pendent of spin) and £jis the interaction hetween the nuclei. Thus the sum of the terms involving Ve, Eramee
and £y torms a neutral grouping that is well defined. The independent-particle kinetic energy 15 is given ex-
plicitly as a functional ol the orbitals; however, 7; [or cach spin ¢ must be a unique functional of the density
n(r,¢) by application of the Hohenberg-Kohn arguments applied to the independent-particle Hamiltonian [1]

All many-body cffects of exchange and correlation are grouped into the exchange-corrclation ecnergy Fi.
Comparing the IHohenberg-Kohn and Kohn-Sham expressions lor the (otal energy shows thal F. can be writlen

in terms of the Hohenberg-Kohn functional as
Eveln] = Fyxln] — (LInl | Erraereelnl),
or in the revealing torm
Eelt] =< T > —1i[n) | < Vig > —Eiramee|n].

Here (1] denotes a functional of the density n{r, ¢)which depends upon both position in space 1 and spin ©.
One can sce that £ [r]must be a functional since the right-hand sides of the equations are functionals. The latter
cquation shows cxplicilly that E, is just the difference of the kinctic and internal interaction energics of (he truc
intcracting many-body system from thosc of the fictitious independent-particle system with clectron-clectron
interactions replaced by the Hartree energy.[ 1]

It the universal tunctional F,.[n| defined in the last equation , were known, then the exact ground state
encrgy and density of the many-body electron problem could be found by solving the Kohn-Sham equaltions for
independent-particles, To the extent that an approximate form for £, [#] describes the true exchange-correlation
cnergy, the Kohn-Sham method provides a fcasible approach to calculating the ground state propertics of the

many-body clectron system.



Chapter 3

Pseudopotential

The pscudopotential is an attempt o replace the complicated effects of the motion ol the core electrons of an
atom and ils nucleus with an cifective potential, or pseudopolential, so that the Schradinger cqualion containg
a modified clfective potential term instcad of the Coulombic polential term for core ¢lectrons normally found
in the Schrodinger equation. The pseudopotential approximation was first introduced by ans Hellman in the
1930s. By construction of this pseudopotential, the valance wavetunction generated is also guaranteed to be
orthogonal o all core states.

The pseudopotential is an effective potential construeted w replace the atomic all-electron potential such
that core states arc climinated and the valence clectrons are described by nodeless pscudo-wavelunctions, Tn
this approach only the chemically active valence clectrons are dealt with explicitly, while the core clectrons
are “frozen”, being considered together with the nuclei as rigid non-polarizable ion cores. Norm-conserving
pseudopotentials are derived from an atomic reference state, requiring that the pseudo- and all-electron valence
cigenstates have the same energies and amplitude (and thus density) cutside a chosen core culofl radius r,.
Pscudopotentials with larger cutoff radius are said o be solier, that is more rapidly convergent, but at the same
time less transferable, that is less accurate to reproduce realistic [eatures in different environments,

Motivation:

L. Reduction of hasis set size

2. Reduction of number of electrons

3. Inclusion of relativistic and other clfects

Approximation:

1. Onc-clectron picture,

2. Small corc approximation assumes that there is no significant. overlap between core and valence WI So

the exchange correlation potential is:

E.l‘(‘(”(‘ure | -"ivm'(fm:e) = t‘_\‘r'(”(‘m'ﬁ') | E\‘(.‘(nvalem‘(f)

3.1 The Pseudopotential Approximation

It has been shown by the usc of Bloch’s theorem, that a planc wave encrgy cul-ofT in the Tourier expansion of the
wavetunction and caretul k-point sampling that the solurion to the Kohn-Sham equations for infinite crystalline
systems is now tractable. Unfortunately a plane wave hasis set is usually very poorly suited to expanding the
clectronic wavelunctions because a very large number are required o accurately describe the rapidly oscillating

wavelunctions of electrons in the core region.
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and pscudopotential are identical (o the all clectron wavelunclion and polential outside a radius cut-ofT £, This
condition has to he caretully checked for as it is possible for the pseudopotential to introduce new non-physical
states (so called ghost states) into the calculation.

The pseudopotential is alse constructed such that the scatering propertics of the pseudo wavelunction are
identical (o the scaltering propertics of the ion and core electrons. In general, this will be different for cach
angular momentum dependence arc called non-local pscudopotentials,

The usual methods of pscudopotential generation firstly determine the all clectron cigenvalues of an atom
using the Schrodinger equation:

o,

{—%V‘ IV} erwar,

where Wag,is the wavelunction for the all clectron (AL alomic system with angular momentum component
I. The resulting valence eigenvalues are substituted back into Schrodinger equation but with a parametrized

pseudo wavetunction tunction ot the form.
i
Wps, = Z aijn’
il

Here, j; are spherical Bessel functions. The cocflicients, g, are the parameters fitted 1o the conditions listed
below. In general the pseudo wave function is expanded in three or four spherical Bessel functions.

The pscudopotential is then constructed by dircetly inverting the Kohn-Sham cquation with the pscudo
wavclunction

A pseudopotential is not unique, therefore several methods of generation also exist. However they must
ohey several criteria. These are:

L. The core charge produced by the pseudo wavelunction must be the same as that produced by the atomic
wavelunction. This ensures that the pscudo atom produces the same scattering propertics as the ionic core.,

2. Pscudo-clectron cigenvalues must be the same as (he valence cigenvalucs obtained from the atomic
wavclunctions.

3. Pseudo wavefunctions must be continuous at the core radius as well as its first and second derivative and
also be non-oscillatory.

4. On inversion of the all electron Schrodinger equation for the atom, excited states may also be included in
the caleulation (if appropriate for a given condensed matler problem), for example, generating a d component
for a non-local pscudopotential when the ground state of an atom does not contain these angular momentum

COMPONCnts,

3.2 Norm Conserving Psecudopotential

‘To obtain the exchange-correlation energy accuralely it is necessary that outside the core region the real and
scudo wavelunctions be identical so that both wavelunclion generate identical charge densitics. Generation of
g g

a pscudopotential that satisfics
Yo Fe
[vietrwnindr [ vinvning
[ 0

where Wi, (r) is the electron wavefunction and w7, (r) is the pseudo wavetunction, guarantees the equal-
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ity of the all electron and pscudo wavefunctions outside the core region. In practice this is achicved using
a non-local pseudopotential which uses a different potential for each angular momentum component of the
pseudopotential. This also best describes the scattering properties from the ion core.

Pseudopolental of this type are known as non-local norm-conserving pscudopotential and are the most
translerable since they are capable of describing the scatlering properties of an ion in a variety of alomic

cnvironmenis.[4]

3.3 Kleinman-Bylander Pseudopotentials

‘The most general form ol non-local pscudopotential is

W(?H Z ‘K‘H! > ‘/l, < Y!m|

lin

wherely,, are spherical harmonics and Vi is the i angular momentum component of the pscudopotential
acting on the wavefunction, If there are Ny, planc waves in the expansion of the wavelunction at cach k-point
and there are Nj k-points then the evaluation of Vie, will require NpwNg(Npw + 1) /2 projectors of the above
form to be calculated for each angular momentum component /.

The crystal potential V,.(r} is obtained by placing a pscudopotential for cach species at cach site in the

latice. The structure factor incorporates the crystal symmetry, hence
A 1" A 1’ Al 1"
VilG=G) Y s(G—G)WVplG—-G)
X

. . . . . . . . . . N o
where (the summation index is over ionic specics and the structure factor for cach specics is 8,(G— G )

¥, exp(i(G—G)Ry). The total ion-clectron energy is then

~ -
E(’ic'c' Lo dm E < IV‘YIH! > Vcr((-' -G ) < Y!.‘n|l}'f >
GG'

Tt can be scen thal this gives an inseparable double sum over (7 and G . Evaluation of the ion-clectron con-
tribution to the total energy therefore scales as the square of the number of plane waves used in the expansion.
This is computationally inetficient and will severely limit the size of any calculation.

A more elficient way of evaluating this contribution is due 10 Kleinman and Bylander. By expressing the
pscudopotential in a different form they were able (o split the double sum inte a product of two single sums.

The Kleinman-Bylander pscudopotential has the form

IVImSVI >< 5V1Wm|
< lff!.‘n|6V." Wi >

Vimf V[,()(.' I Zl

where Vg, is an arbitrary local potential, wr,, are pscudo atom wavelunction and 8V; is defined by 8V,

Vine — Vioe, where Vi yy, is the T angular momentum component of a non-local pseudopotential.
3.4 Step by step pseudopotential generation
The sequence of processes required (0 produce a potential is as follows:

L. The KS equations are solved for the atom. It is important to include in the construction all the orbitals

that will take part in bonding the solid state.
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2. Then, the solution (o the all-cleciron KS equations for the alom produce a sct of all-clectron wavelunc-
tions and energy levels, which in turn can construct the all electron potential V*(r). 'This potential contains the
exchange-correlation, artree and nuclear potential, and is singular at v~ (.

3. From these all-clectron quantities, one constructs a [irst approximation o the pscudopotential for cach
value of the angular momentum, /.

4. generale all-clectron wavefunctions

5. choose the matching radii- . is the radius at which the pscudo-wavefunction and (ruc wavefunction
approach each other, and is termed the core radius. Care must be taken in the choice of value for r,. since taking
too large a value will remove critical bonding information from the potential.

6.choose if we wanlt the core corrections

7.generate the pseudopotential

8.The potential that gives rise to the pscudo-wavelunction is obtained by inverting the Schrodinger using
the cnergy levels of the all-clectron sysicimn. Such a potential would then give rise 1o a wavelunction thal agrecs
with the all electron wavetunction outside the core radius, and also generates the all-electron energy levels

9. check its transterability

10. check the required cutoll

11. check its separable form

To gencerate the pscudopotential that we need later for STESTA we used another program called “ATOM”,
The program was originally written in 1982 by Sverre T'royen at the University ol California al Berkcley,
modified starting in 1990 by Norman Troullier and Jose Luis Marting at the University of Minnesota, and
currently maintained by Alberto Garcia.

The program’s basic capabilitics are:
s All-electron DII" atomic calculations for arbitrary electronic configurations
e (eneration of ab-initio pscudopotentials

¢ Atomic caleulations in which the effect of the core is represented by a previously generated pseudopoten-
tial. These are uscful to make sure that the pscudopotential correctly reproduces the all-clectron results

for the valance complex,

In the nextimages are emphasis pscudopotentials obtained by with the “ATOM™ program lor boron and nitrogen
for quantum number / = 0, 1. Both potential were generated with LDA exchange-correlation approach.

For both boron and nitride orbitals 2s and 2p arc occupied and orbitals {rom 1s arc in core so we neglectled
them.The cutting radius used was v 1.71Bohrs. The way these graphics arc obtained and the rcason we need

them were explained in this section.
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Chapter 4

Defects

4.1 Definition of point defects

A point defect in a crystal is an enlity that causes an interruplion in the lattice periodicity. This occurs during
the following circumstancces.

a) An atom is removed [rom its regular lattice site: the defect is a vacancy.

b) An atom is in a site different from a regular (substitutional) lattice site; the defect is an interstitial.
An interstitial defect can be of the same species as the atoms of the lattice (it is an intrinsic defect, the self-
inlerstitialy or of a different nature (it is then an extrinsic defect, an interstitial impurity).

¢) An impurity occupics a substitutional silc.

Various kinds of defects are also formed by the associalion of intrinsic or extrinsic, substitutional or inter-
stitial defects. Por instance, a vacancy close to a self-interstitial is a 'renkel pair; two vacancies on neighboring
lattice sites torm a divacancy. In compound semiconductors all the Tattice sites, interstitial as well as substitu-
tional, are not equivalent and a larger variely ol intrinsic as well as extrinsic defects exists. For instance, in a
2-6 or 3-5 compound, there are two different sublatice cach having its own vacancy, its own interstitial, and
s own substitutional or interstitial impurity, An atom of onc sublallice placed in the other sublattice forms an
Hanti-site” defeet.[11]

All these various types of defects are schematized in I'ig. 4.1 . They are “point” defects in contrast to one-
dimensional defects (dislocations), two-dimensional defects (surtaces, grain houndaries) or three-dimensional
defeets (voids, cavities). Small aggregates of several point defecets can still be considered as point defects. In
that case. the fronticr between a point defect and a three-dimensional one is not well defined. |8

The notion of peint defeet implics that the perturbation of the latlice remains localized, i.c., il involves an
atomic sitc and few ncighbors. But the associated clectronic perturbation can extend to larger distances and
he, at the limit, delocalized. ‘The above definition of point detects makes reference to a perfect system with
translational periodicity which is a result of long-range order. 'The perfect lattice arrangement is only broken in
a localized region. However, the geometrical delinilion requires only the existence of the same poinl delects in
amorphous covalent materialy since, in these materials, the short-range order is preserved. Indeed in amorphous
covalent materials, the interatomic distance as well as the hond angle are nearly equal to their counterparts in the
crystal. Conscquently, the environments of a point defeet in both types of materials, because of the distortion
and relaxation the defect induces, are qualitatively similar.|9|

I'inally, when the concentration of the defects is large enough so that they interact (i.e. there is an overlap of
the individual perturbations they induce), they cannot be considered as isolated point defects; defect ordering

Can OCcur.
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I'igure 4.1 Point detfects in semiconductors @ vacancies, interstitials, I'renkel pairs.

4.2 Geometrical Configuration of Point Defects

4.2.1 The Vacancy

I'our bonds are broken in order to remove an atom from its lattice site and form a vacancy I'ig. 4.2a. "The broken
(dangling) bonds can torm new bonds, leading to atomic displacements. This bonding depends on the charge
state of the vacaney, i.c., on the number of electrons which oceupy these dangling bonds Fig. 4.2b. and Fig.
4.2¢.. The small atomic displacements of the neighbors ol the vacancy can be inward or outward displacements
that preserve the local symmetry (relaxation) or alier it (distortion). The amplitude of these displacements as

well as the new symmcetry depend on the type of the bonding, i.¢., on the charge state [3].,[10].
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Figure 4.2: The vacancy in diamond lattice and its schematic representation in two dimensions, a) Tour honds
are broken in order to create the vacancy. b)When there is one electron per dangling bond they form two new
honds leading to local distortion. ¢) When an electron is missing one of these two bonds is weakened since it
contains only one electron.
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4.2.2 The divacancy

The divacancy is [ormed by the removal of two neighboring atoms Tig. 4.3.. The split-divacancy configuration,
corresponding (o the configuration of the divacancy in the saddle point for the migration is given in Tig, 4.4,
As for the vacancy case, the type of bonding (and hence the distortion and relaxation the neighboring atoms

underge) the dangling bonds form is dependent upon their electronic occupancy| 3.
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Iigure 4.4: "The split-divacancy configuration and its schematic two-dimensional representation

4.2.3 The interstitial

It is impossible to decide a priori what are the stable sites for an interstitial atom. However, we can stay that in
positions of high symmeltry, the wtal clectronic energy ( with all other atoms at their perfect position) will be
an cxtremuim. I is thus reasonable 1o consider that some of these high-symmetry sites are the stable interstitial
positions, Because of the symmetry of the lattice, there may be sceveral equivalent positions per unit cell,

Two ncighboring stable interstitial sites arc separated by other high-symmetry positions which correspond
to saddle points of the electronic energy when all other atoms are again kept fixed at their perfect crystal
positions.  All these arguments based on the symmetry of the lattice can be altered, for instance, when the

clectron-phonon interaction is taken into account. This interaction Can give rise w distorons of systenl, As a
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result the stable positions will no longer he (those of high symmetry, There can be “ofi-centered” configuralions
in which the interstitial is slightly displaced from its ideal site. In this respect, once the ideal site has been

identified, the situation becomes much the same as for the vacancy [3].

o n

L
. =S A
o-f{ v

- R+ LS

Figurc 4.7: The bond-centered interstitial configuration and its schemaltic two-dimensional represcentation
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Figurc 4.8: Somc split-interstitial configurations

4.24 Complex Defects

When a simple delect moves, it can interact with other intrinsic as well as extrinsic point defects giving rise
o a more complex defect. For instance, when the vacancy beconies mobile in silicon, it can be (rapped by an
oxygen impurity (present in Czochralski in grown malterial) and from V- 0 complex ( the A cenler), or by the
doping impurity (Al for instance) and form V-Al complex (the T cenlter), or by another vacancy (in undoped
floating zone material) and form divacancies. lig. 4.9. gives the configuration of the A center in which the

oxygen atom occupies a position slightly displaced from the substitutional vacancy site [3].

TFigure 4.9: Tn the A-center configuration (vacancy + oxygen complex), the oxygen atom is slightly displaced
ofl the substitutional position

42,5 Aggregates

When the concentration of a particular defeet is large, they (end (o aggregate as the (cmperature is increascd.
Vacancies form divacancies that upon hecoming mobile or dissociating, form trivacancies, quadrivacancies and
so on. In principle, the larger the number of defects involved in an aggregate, the larger the number of possible
configurations. But when the number of vacancies in the complex is large, they end w0 arrange themselves in
lings, rings, or platclets. This behavior should also be true lor self-interstiials and for any type of extrinsic
deleets [3].
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Figure 4.10: One possible conligurations for a pentavacancy

4.3 Lattice Distortion and Relaxation

We have already mentioned that the introduction of a point defect induces displacements of the lattice atoms
which surround it. The atoms involved arc first neighbors, second neighbors, depending on the range of the
perturbation introduced by the defect, When the symmetry of the lattice is conserved, these displacements are
said to result in a relaxation; when the symmetry is lowered, the induced displacement are said to result in a
distortion. The amplitude as well as the type of displacement the lattice atoms undergo is obtained theoretically
by minimizing the otal encrgy of the system, lattice plus defect, versus the positions of the various atoms
involved in the distortion or in the relaxation, With an increasing number of atoms involved in the distortion, the
number of displaccments (0 he considered increascs rapidly and the problem becomes quickly impracticable.
The type of distortion depends on the way the defect is bonded to the neighboring atoms. As a result,
the distortion is a tunction of the charge state of the defect. This notion is very important, because it results
in a charge-state dependence of energies and entropics. Consequently all the properties which are related w
these quantitics, defleet concentration at thermal equilibrium, stability, migration, diffusion, solubility, vibra-
tional modes, cleciron-phonon interaction will be charge-state dependent. A manifestation of this charge state

dependence of a distortion is Jahn-Teller effect [11].
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DFT calculae in crystalline systems

Siesta is both a method and its compuler program implemenltation, o perform electronic structure caleulations

and ab initio molccular dynamics simulations of molecules and solids. Tts main characteristics arc:

Tt uses the standard Kohn-Sham self consistent density [unctional method in the local density (LDA-T.SD)

or generalized gradient ((GGGA) approximations.
It uses norm-conserving pseudopotential in its fully nonlocal (Kleinman-Bylander) form.

Tt uses atomic orbitals as basis sct, allowing unlimited multiple-zcta and angular momenta, polarization
and olf-sitc orbitals. The radial shapc of cvery orbital is numerical and any shape can be used and
provided by the user, with the only condition that it has to be of finite support, it has to be strictly zero
heyvond a user-provided distance from the corresponding nucleus. Finite-support basis sets are the key

for calculating the Hamiltonian and overlap matrices in Q{N) operations.

Projccts the clectron wavelunctions and density onto a real-space grid in order (o calculate the Tartec

and exchange-correlation potentials and their matrix clements

Besides the standard Rayleigh-Ritz eigenstate method., it allows the use of localized linear combinations
ol the occupied orbitals (valence-bond or Wannier-like functions), making the computer tme and mem-
ory scale lincarly with the number of atoms. Simulatons with several hundred atoms are feasible with

madest workstations,

Tt routinely provides:

L

»

[ ]

»

Total and partial energies

Alomic lorces

Stress (ensor

Lilectric dipole moment

Alomic, orbital and bond populations (Mulliken)

Flecwron densily

And also (though not all options are compatible):

L

Geometry relaxation, fixed or variable cell
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e Constant-tcmperature molecular dynamics (Nose thermosial)

[ ]

Variable cell dynamics (Parrinello-Rahman)

[ ]

Spin polarized calculations (collinear or not)

[ ]

k-sampling ot the Brillouin zone

»

Local and orbital-projected density of states

Band structure

»

5.1 Basis Set

Order-N methods rely heavily on the sparsity of the lamiltonian and overlap matrices. The sparsity requires
cither the neglect of matrix elements that are small enough or the us of strictly confined basis orbitals, i.c.,
orbitals that are zero beyond a cerlain radius. Within this radius, our atomic basis orbitals are products ol a

numerical radial functional times a spherical harmanic, Tor atom 7, located al Ry,

(;t’!imn(r) (,b.fin(r.’)yfm(f'!)

, and 7=7. The angular momentum (labeled by 1.m) may be arbitrarily large and,

wherery  r—rp, 0 T
in general, there will be several orbitals (Jabeled by index n) with the same angular dependence, but difterent
radial dependence, but different radial dependence, which is conventionally called a “multiple-{™ hasis. lach
radial (unction may have a different cuwtolf radius and, up 1o that radius, its shape is completely [ree and can be
introduced by the user in an input file.

Tn the casc of a minimal (singled) basis sct, we have found convenient and cfficient the method of Sankey
and Niklewski. Their basis orbitals arc the cigenlunctions of the (pscudo) atom within a spherical box, Tn
other words, they are the (angular-momentum-dependent) numerical eigenfunctions ¢;(#} of the atomic pseu-

dopotential V;(r), tor an energy & | 8¢& chosen so that the first node occurs at the desired cutoft radius rf

1 _*I(III)
2r dr? ! 252

{ | Vile (v} (& 1 d&)én(r)

with ¢;(#) (. In order to obtain a well balanced basis, in which the effect of the confinement is similar
for all the orbitals, it is usually better to fix a common “energy shift” 8¢, rather than a common radius #*, tor
all the atoms and angular momenta. This means that the orbital radii depend on the atomic species and angular
NOMCNLUNL.

Onc obvious possibility for multiple-& bhascs is o usce pscudopotential cigenfunctions with an increasing
number of nodes. They have the virtue of heing orthogonal and asymptotically complete. The clliciency of
this kind of basis depends on the radii of confinement of the difterent orbitals, since the excited states of the
pseudopotential are usually unbound. Another possibility is to use the atomic eigenstates tor different ionization
states.| 4|

The user can feed into Sicsta the atomic basis set he/she chooses by means of radial tables, the only limita-
tion heing:

i) the funcuons have o be atemic-like (racial funclions multiplicd hy spherical harmonics)

i) they have to be of finite support, i.e., each orbital hecomes strictly zero beyond some cutoft radius chosen
hy the user.
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5.2 Electron Hamiltonian

Within the non-local-pseudopotential approximation, the standard Kohn-Sham one clectron Hamillonian may

be wrilten as;

~

g | Zvllocui(r) | ZVIKB | VH(T') | VXC(")
7 !

where 7' —1V? is the kinetic energy operator, / is an atom index, V7(r) and VX“(r) are the lartree and
X( potentials, and V/*(r} and V,?CB are the local and non-local (Kleinman-Bylander) parts of the pseudopo-
tential of atom 1.

Since the atomic basis orbitals are zero beyond the cutoll radius /§ = max;(r§, ), the screened “neutral-atom”
(NA) potential V¥ = yiecel L yaton g also zero heyond this radius, Now let $p(r) be the difference hetween
self-consistent clectron density p{#) and the sum of atomic densitics p“* ¥, p” and let SVH(r) be the
electrostatic potential generated by 8p{r), which integrates to zero and is usually much smaller than p(r). Then

the total [lamiltonian may be written as:

g KH NA[ Y 1 SV

o T+Y VLY V() + 8V +V(r)
1 1

The matrix clements of the first two terms involve only (wo-center integrals which are calculated in recip-

rocal space and tabulated as a function ol intcratomic distance. The remaining terms involve potenlials which

are calculated on a three-dimensional real-space grid.[4|

5.3 Sampling the Brillouin Zone

Brillouin zones are an important characleristic ol crystal structure.  Integration of all magnitudes over the
Brillouin zonc (B7) is csscntial for small and modcrate large unit cells, cspecially of metals. Although Sicsta
is designed for large unit cell, in practice it is very usclul. especially for comparisons and checks, (o be able
to also perform calculations efficiently on smaller systems without using expensive superlattices. On the other
hand, an efficient k-sampling implementation should not penalize, because of the required complex arithmetic,

the T-point caleulation used in large cells (Fig. 5.1.).

1
&y ' /

Figure 5.1 Brillouin zone of hexagonal lattice

Around the unit cell we define an auxiliary supercell large enough o contain all the atoms whose basis
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orhitals arc non-zero at any of the basis orbilals in it. We calculate all the non-zero (wo-center integrals hetween
the unit cell hasis orbitals and the supercell orbitals, without any complex phase factors. We also calculate the
grid integrals between all the supercell basis orbitals O, and ¢~ (primed indices run over all the supercell), but
within the unit cell only, We accumulate these integrals in the corresponding matrix clements, thus making use

of the relation

< ¢u|Virle, > Y <o Vinsmles >

(v =w)

F(ry =1 for r within the unit cell and is zero otherwise. Once all the real overlap and Hamiltonian matrix
clements are caleulated, we multiply them, at every &-point by the corresponding phase factors and accumulate

them by folding the supereell orbital to its unit-cell counterpart, Thus

KR Ry)
Hyo(k) Z H'm_fe‘ S B
W=y
The resulting N x N complex eigenvalue problem, with &V the number of orbitals in the unit cell, is then

solved at every sampled k point, finding the Bloch-state expansion coefficients ¢y;(k):
e
vitkr) Y 0, (e (k)
u'
The clectron density is then

pt) L [ mhwk Pl Y oy 0o, () 5.1

ror
u'y

where the sum is again over all basis orbitals in space and the density matrix

Py Z/ C;Li(k)”i(l\')(?ir(k)f’ik(!{"_i{”)dk (5.2)
i B/

Thus, to calculate the density at a grid point of the unit cell, we simply find the sum 5.1 over all the pairs of
orbitals ¢y, ¢, in the supercell that arc non-zero at that point.

In practice, the integral in 5.2 is performed in a finite, unilorm grid of the Brillouin zone. The fineness of
this grid is controlled by a k-grid cutoff 7., a rcal-space radius which plays a role equivalent (o the plancwave
culodT of the real-space grid. The origin of the 4-grid may be displaced from k=0 in order 10 decrcasc the
number of nonequivalent k-points.

If the unit cell is large enough to allow a I'-point-only calculation, the multiplication by phase factors is
skipped and a single real-matrix cigenvalue problem is solved. In this way, no complex arithmetic penalty
oceurs, and the dilferences between I-point and k-sampling are limited 0 a very small section of the code,

while all the two-center and grid integrals usc always the same real-arithmetic code.[4]
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Results

The starting point in this study was the crystalline system with the crystallographic constants, subsequently
allowing the structural relaxation,

First we calculated the corresponding position for aloms in an clementary wurlzit ccll.then these were
shifted on the three axes in order to produce a “triple” cell with a volume 27 times bigger than the elementary
cell. In the middle of the cell were placed different types of defects (I'ig.6.1) and using the Born von Karman

conditions, we construct the infinite super-crystal formed by these super-cells.
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ligure 6.1: super-cell with one defect

The bigger super-cell reproduces more accurately the posioning of the associated energy level of the
defeet, limiting its splitting in a band. Because a bigger cell demands a larger computational amount of dme

onc has (o rcach a compromisc between these (wo clements.,

6.1 Bulk

Iirst of all we will study the bulk case for the two systems, aluminium nitride (IYig. 6.2) and boron nitride (l'ig.
6.3).

Aluminium nitride (AIN) is a semiconductor with a large direct gap. Since it crystallizes in wurtzite lattice
the band structure differs from that of the most other TT-TV compounds [5].To check out the pscudopotential
we obtained the density of states and energy dispersion, which have been plotied for the bulk system (Tig. 6.2.).
We can observe that the band gap is a direct one.
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Figure 6.2: Band structure and density of states for Aluminium nitride

Boron nitride (BN) is a chemical compound which is not found in nature and is thercfore produced syn-
thetically from boron acid and boron trioxide. The initial product is amorphous BN powder, which is converted
to crystalline h-BN by heating in nitrogen flow at temperatures above 1500°C. Wurtzite BN can be obtained
via statisic high-pressure or dynamic shock methods. The limit of its stability are not well defined.[6][7] We
plotted the density of states and energy dispersion for boron nitride bulk also in Fig (6.3.), but in this case we
found, as expected an indirect band gap.
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Figure 6.3: Band structures and density of states for Boron nitride
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Figure 6.4: Density of states for aluminium nitride bulk

In the case of aluminium nitride we obtained a value for the band gap of 5.4 eV which is close to the
experimental one which has a value of 5.8 eV. The Fermi level is positioned at, and Fermi level has the value
Ep = —4.8eV.

One can see in Fig.6.5 that for aluminium nitride the edge of valence band is given by 2p orbitals of
nitrogen, while the 2s orbitals from nitrogen and 2s orbitals from aluminium form the states from the edge of
conduction band. That is why we can state that the band gap for AIN bulk is a direct one and transitions are

allowed between valence and conduction band.
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—— orbitali 3p aluminiu
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Figure 6.5: Partial DOS for aluminium nitride

For bulk boron nitride Fig. 6.6 the band gap obtained is 5.9 eV, while the experimental value is 6.2 eV, and
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Fermi level is Ep — —3.4¢eV.
For horon nitride Fig. 6.7. the edge of valence band is given by 2p orbitals of nitrogen and by 2p orbitals
of boron. The conduction band is given by 2p orbitals from nitrogen and 2p orbitals from boron. In this case the

transition between bands are not allowed,and in order for them to occur they have to be mediated by phonon

scatlering.
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Figure 6.6: Density of states boron nitride bulk
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Figure 6.7: Partial DOS for boron nitride bulk

We notice that for bulk structure relaxation did not lead to a significant change of lattice parameters. (Fig.
6.8)
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Figure 6.8: Bulk-after relaxation

6.2 Vacancies

In Fig. 6.9 we observe the influence of defect Viy in conduction band, resulting in a new split in band.

For the case of nitrogen vacancy (Vy) in aluminium nitride the states from the valence band are given
mostly by nitrogen’s orbitals and less by aluminium orbitals, while the states from conduction band are given
mainly by the latter. New edge states appear in conduction band because of defect Vy.

The vacancy leads to the appearance of o group of states with a donor character, which are mainly formed
by nitrogen orbitals.

The value for band gap is £, = 4.4eV, which is effectively decreased by the presence of the donor levels

near the conduction band.
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Figure 6.9: Density of states: Vyin aluminiun nitride
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Figure 6.10: Partial DOS for Vyin aluminium nitride

In Fig. 6.11 we can see the influence of a similar defect in the AIN structure.

Figure 6.11: Vy in aluminium nitride after relaxation

A vacancy V3 in boron nitride (I'ig. 6.12) produces a bigger split in valence band and some smaller ones in
conduction band,

The states from the edge of valence band are made mostly by nitrogen orbitals and the consequence is the
splitting of the valence band. Boron’s orbitals are responsable for the states in the conduction band producing
some new states on its edge. The defect Vi alters the top edge of valence band and for chosen size of super-cell,
calculation predicts metal system. This is an artifact of the type of calculation we made because the chosen
super-cell is too small. Extrapolating, we can say that this type of defect is a shallow acceptor.Because of defect
Vp resulted a band gap FE, — 5.6 ¢V.
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Figure 6.12: Density of states for Vp in boron nitride
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Figure 6.13: Partial density of states : left-Viy in aluminium nitride, right-Vin boron nitride
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Figure 6.14: Vg in boron nitride after relaxation

6.3 Impurities

Further, we studied the effects introduced by impurities: the case of aluminium nitride with a germanium atom
substituting an aluminium one I, and the case of boron nitride doped with carbon, having the impurity atom
as boron substitutional, I

If we replace one atom of aluminium with a germanium atom I, (Fig. 6.15 and 6.16) we observe the lact
that on the edge of conduction band appear new states. Like beforeo orbitals from nitrogen are related to the
valence hand, while the aluminium and germanium produce the states in conduction band and some new states

in the band gap. In this case we can assert that the defect has a donor character.

From calculation we obtained a band gap £, = 4.41¢V and a Fermi level EF = —2.4¢V.
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Figure 6.15: Density of states : left-/¢.in aluminium nitride
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Figure 6.16: Partial density of states of I, in aluminium nitride

For the other system, boron nitride, from Fig 6.17 and 6.18 due to the presence of I we obhserve new states
inside the band gap in the energy range [—0.83eV, 2.04eV]. These new states are derived from boron orbitals
and carbon orbitals. Most of states from conduction band derived from boron, while the states from valence
band are produced both by boron and nitrogen orbitals. For this system we observed the fact that this defect
has a donor character.

The band gap calculated is E, — 5.6¢V.
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Figure 6.17: Density of states /¢ in boron nitride
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Figure 6.18: Partial density of states: left /- in boron nitride

6.4 Complex defects

FFor complex defects we studied the aluminium nitride with a vacancy of nitrogen Vi and an impurity of silicon
Is; in a place of an aluminium atom, and the boron nitride with a vacancy of nitrogen Vy and an impurity of
silicon fg; in a place of a boron atom.

In Fig. 6.20 we can observe around energies with values between —1.27¢V and 1.46eV new states in band
gap. These states come from both nitrogen and silicon orbitals. The states from valence band come largely
from nitrogen orbitals. We notice that this association of defects creates an amphoteric defect which give rise
to deep donor levels and deep acceptor levels.

In this case the band gap is E, = 3.3003¢V.
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Figure 6.20: Partial density of states - complex defect in aluminium nitride
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Figure 6.21: Complex defect in aluminium nitride after relaxation

The same defect was studied for boron nitride. In this structure we notice new bands inside the band gap of
the ideal bulk material, states generated mainly by boron and silicon orbitals. New donor and acceptor levels
appear, but the splitting between donor and acceptor centers is higher compared to AIN system. The silicon
orbitals and boron orbitals produce new states in the middle of the band gap and boron and nitrogen orbitals
produce the states at the edge of the conduction band.

From calculation results a band gap F, — 6.1¢V.

40 T T T T T T T

— BN - o vacanta N, un dopant Si in loc de B
—-— BN - bulk

20

DOS [a.u]

10 :
|

Yo

E [ev]

Figure 6.22: Density of states - complex defect in boron nitride
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— DOS BN - vacanta azot, dopant siliciun
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Figure 6.24: Complex defect in boron nitride after relaxation
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Chapter 7

Conclusions

We indicated the influence of different types of defects on the band structure of two wide band gap wiirtzile
scmiconductors, namely, boron nitride and aluminium nitride. The DET calculation results made so Tar showed
that :

- in case of aluminium nitride system, germanium is an efficient donor and silicon dopant together with
a nitrogen vacancies give rise to new donor and acceptor levels: we established the positions of these energy
levels

- in case of boron nitride system, carbon is an efficient donor and silicon dopant together with nitrogen
vacancics also give rise 1o donor and acceptor levels, but in this case the splitting hetween two centers, donor
and acceptor, is higher,

We identified the nature of the valence and conduction bands, as well as of the difterent impurity levels in
terms of s and p orbitals. These yield direct conclusions over the allowed and torbidden radiative transitions.

From the DFT calculations that were undertaken one can extract the formaion energies in the different
systems and therefore one can establish which type of defect is more likely or whether a certain atomic specics
conslitulcs an clficient dopant as a donor or an acceplor.

For (he future we intend to study other more complex lypes of delects in aluminium nitride and horon

nitride and to calculate the formation energy of such defects.
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