
Codifiable languages and the Parikh matrix
mapping

Adrian Atanasiu∗ Carlos Mart́ın-Vide† Alexandru Mateescu‡

Abstract

We introduce a couple of families of codifiable languages and investigate
properties of these families as well as interrelationships between different fam-
ilies.

Also we develop an algorithm based on the Earley algorithm to compute
the values of the inverse of the Parikh matrix mapping over a codifiable
context-free language. Finally, an attributed grammar that computes the
values of the Parikh matrix mapping is defined.

1 Introduction

In this paper we continue the investigation started in [1] on the injectivity of the
restriction of the Parikh matrix mapping to languages.

The Parikh mapping or the Parikh vector was introduced in [3]. The main result
concerning this mapping is that the image by the Parikh mapping of a context-free
language is always a semilinear set.

The Parikh matrix mapping is an extension of the Parikh mapping introduced
in [2]. This extension is based on a special type of matrices. The classical Parikh
vector appears in such a matrix as the second diagonal. All other entries above the
main diagonal contain information about the order of letters in the original word.
All matrices are triangular, with 1’s on the main diagonal and 0’s below it.

Two words with the same Parikh matrix always have the same Parikh vector, but
the converse is not true. Hence, the Parikh matrix mapping gives more information
about a word than the Parikh vector.
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We start with some notations and definitions from the theory of formal languages.
The set of all positive integers is denoted by N . Let Σ be an alphabet. The set of
all words over Σ is Σ∗ and the empty word is λ. If w ∈ Σ∗, then |w| denotes the
length of w. It should cause no confusion that sometimes we use also the customary
notation, where vertical bars denote the absolute value of an integer.

In this paper we very often use “ordered” alphabets. An ordered alphabet is an
alphabet Σ = {a1, a2, . . . , ak} with a relation of order (“<”) on it. If for instance
a1 < a2 < . . . < ak, then we use the notation:

Σ = {a1 < a2 < . . . < ak}.

Let a ∈ Σ be a letter. The number of occurrences of a in a word w ∈ Σ∗ is
denoted by |w|a. Let u, v be words over Σ. The word u is a scattered subword of v
if there exists a word t such that v ∈ u t, where denotes the shuffle operation.
If u, v ∈ Σ∗, then the number of occurrences of u in v as a scattered subword is
denoted by |v|scatt−u.

Partially overlapping occurrences of a word as a scattered subword are counted
as distinct occurrences. For instance, |acbb|scatt−ab = 2 and
|bacb|scatt−ab = 1.

Let Σ = {a1 < a2 < . . . < ak} be an ordered alphabet. The Parikh mapping is
a mapping:

Ψ : Σ∗ → Nk,

defined as:
Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak

).

The Parikh vector of w is (|w|a1 , |w|a2 , . . . , |w|ak
). Note that the Parikh mapping

Ψ is a morphism from the monoid (Σ∗, ·, λ) to the monoid (Nk, +, (0, 0, . . . , 0)).
The mirror of a word w ∈ Σ∗, denoted mi(w), is defined as: mi(λ) = λ and
mi(b1b2 . . . bn) = bn . . . b2b1, where bi ∈ Σ, 1 ≤ i ≤ n.

A word w is a palindrome iff w = mi(w).
Let Σ and ∆ be two alphabets such that Σ ⊂ ∆. A weak identity is a morphism

f from ∆∗ to ∆∗, such that f(a) = a for all a ∈ Σ and f(b) = λ for all b ∈ ∆− Σ.
For more results and notions of formal languages, see [4].
Now we recall the notion of the Parikh matrix mapping.
Consider a special type of matrices, called triangle matrices. A triangle matrix is

a square matrix m = (mi,j)1≤i,j≤k, such that mi,j ∈ N , for all 1 ≤ i, j ≤ k, mi,j = 0,
for all 1 ≤ j < i ≤ k, and, moreover, mi,i = 1, for all 1 ≤ i ≤ k.

The set of all these matrices is denoted by M.
Comment. The set of all triangle matrices of dimension k ≥ 1 is denoted by Mk.

The set Mk is a monoid with respect to multiplication of matrices and has a unit
which is the unit matrix of dimension k.

The notion of the Parikh matrix mapping was introduced in [2].
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Definition 1.1 Let Σ = {a1 < a2 < . . . < ak} be an ordered alphabet, where k ≥ 1.
The Parikh matrix mapping, denoted ΨMk

, is the morphism:

ΨMk
: Σ∗ →Mk+1,

defined as follows:
If ΨMk

(aq) = (mi,j)1≤i,j≤(k+1), then for each 1 ≤ i ≤ (k+1), mi,i = 1, mq,q+1 = 1
and all other elements of the matrix ΨMk

(aq) are zero.

2

Example 1.1 Let Σ be the ordered alphabet {a < b} and assume that w = abbab.
Note that ΨM2(w) is a 3× 3 triangle matrix that can be computed as follows:

ΨM2(abbab) = ΨM2(a)ΨM2(b)ΨM2(b)ΨM2(a)ΨM2(b) =




1 1 0
0 1 0
0 0 1







1 0 0
0 1 1
0 0 1







1 0 0
0 1 1
0 0 1







1 1 0
0 1 0
0 0 1







1 0 0
0 1 1
0 0 1


 =

=




1 2 4
0 1 3
0 0 1




However, if Σ is the ordered alphabet {a < b < c} and w′ = babbc, then one can
easily verify that:

ΨM3(w
′) = ΨM3(babbc) = ΨM3(b)ΨM3(a)ΨM3(b)ΨM3(b)ΨM3(c) =

=




1 1 2 2
0 1 3 3
0 0 1 1
0 0 0 1




2

The next theorem shows the basic property of the Parikh matrix mapping, see
[2].
Notation Consider the ordered alphabet Σ = {a1 < a2 < . . . < ak}, where k ≥ 1.
We denote by ai,j the word aiai+1 . . . aj, where 1 ≤ i ≤ j ≤ k. 2

Theorem 1.1 Let Σ = {a1 < a2 < . . . < ak} be an ordered alphabet, where k ≥ 1
and assume that w ∈ Σ∗. The matrix ΨMk

(w) = (mi,j)1≤i,j≤(k+1) has the following
properties:

(i) mi,j = 0, for all 1 ≤ j < i ≤ (k + 1),

(ii) mi,i = 1, for all 1 ≤ i ≤ (k + 1),

(iii) mi,j+1 = |w|scatt−ai,j
, for all 1 ≤ i ≤ j ≤ k.

2
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2 Codifiable and partially codifiable languages

In this section we introduce the notion of codifiable and partially codifiable language.

Definition 2.1 Let Σ be an alphabet with card(Σ) = k. A language L ⊆ Σ∗ is:

(i) codifiable if for each order on Σ the Parikh matrix mapping ΨM : L −→Mk+1

is injective,

(ii) partially codifiable if there is at least one order on Σ such that the corresponding
Parikh matrix mapping is injective in L.

Comment. Obviously, if a language L is codifiable, then L is also partially
codifiable. A language that is not partially codifiable is referred to as a non-codifiable
language.

Proposition 2.1 If Σ = {a, b}, then a language L ⊆ Σ∗ is codifiable if and only if
L is partially codifiable.

Proof: For a binary alphabet, only two orders are possible. Assume that Σ = {a <
b} and ΨM : L −→ M3 is not injective. Let α, β ∈ L be two words such that
ΨM(α) = ΨM(β). Note that |α|a = |β|a, |α|b = |β|b and |α|scatt−ab = |β|scatt−ab.

Since, for each binary word x, |x|scatt−ba = |x|a|x|b − |x|scatt−ab, see also [1], it
follows that |α|scatt−ba = |β|scatt−ba. Hence, ΨM,◦(α) = ΨM,◦(β) and therefore L is
not codifiable on the ordered alphabet Σ = {b < a}, too. 2

The Proposition 2.1 is trivial for the one-letter alphabet, but it is not true if
card(Σ) ≥ 3. This follows from the next example.

Example 2.1 Consider the language:

L = {(ab)nc(ba)n|n ≥ 0} ∪ {(ba)nc(ab)n|n ≥ 0}.

The basic alphabet is Σ = {a, b, c}. Now consider the order a < c < b. The
Parikh matrix mapping ΨM is not injective. For instance:

ΨM((ab)nc(ba)n) = ΨM((ba)nc(ab)n) =




1 2n n n2

0 1 1 n
0 0 1 2n
0 0 0 1


 .

Now consider the order a < b < c and note that the Parikh matrix mapping is
injective:

ΨM((ab)nc(ba)n) =




1 2n 2n2 n(n+1)
2

0 1 2n n
0 0 1 1
0 0 0 1




.
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Note that the only word from L with the same Parikh vector is (ba)nc(ab)n, but
this word has another Parikh matrix mapping:

ΨM((ba)nc(ab)n) =




1 2n 2n2 n(n−1)
2

0 1 2n n
0 0 1 1
0 0 0 1




.

The next remark is a representation result. It shows that every language is the
image by a weak identity of a partially codifiable language.

Remark 2.1 Let Σ = {a1 < a2 < . . . < an} be an ordered alphabet and let L ⊆ Σ∗

be an arbitrary language. Let Σ′ = Σ ∪ {]}, where ] is a new letter.
Then there exists a language L′ ⊆ Σ′∗ and an order on Σ′ such that:

(i) L′ is partially codifiable on Σ′, and

(ii) h(L′) = L, where h is the weak identity defined by h(a) = a, for all a ∈ Σ,
and h(]) = λ.

To show the above properties, consider that the order on Σ′ is Σ′ = {a1 < a2 <
. . . < an < ]}.

Now consider an enumeration of the language L:

L = {wi | i ≥ 0}, where wi ∈ Σ∗ for all i ≥ 0.

Define the language L′ as:
L′ = {wi]

i | i ≥ 0}.
Note that if x, y ∈ L′ such that x 6= y, then |x|] 6= |y|] and hence L′ is a partially
codifiable language.

Also, it is easy to see that h(L′) = L.

2

Notations. We denote by CO the class of all codifiable languages by NCO the
class of non-codifiable languages.

Proposition 2.2 NCO is closed under: union, catenation, Kleene star, λ-free mor-
phisms.

NCO is not closed under general morphisms.

Proof. The positive assertions are easy to be verified. To show that NCO is not
closed under general morphisms, consider the language L = {α ∈ {a, b}| |α|a = |α|b}
and the morphism h(a) = a, h(b) = λ. Then h(L) = a∗, which obviously is a
codifiable language.

2
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Proposition 2.3 CO is not closed under union and general morphisms.

Proof. Consider the languages L1 = {(ab)n(ba)n|n ≥ 0}, L2 = {(ba)n(ab)n|n ≥
0}. The alphabet is Σ = {a, b}. The Parikh matrix mapping ΨM is injective for
both languages, since for the order a < b we obtain:

ΨM((ab)n(ba)n) = ΨM((ba)n(ab)n) =




1 2n 2n2

0 1 2n
0 0 1




(for the reverse order the Parikh matrix mapping remains injective, see Proposition
2.1).

But L1 ∪ L2 6∈ CO (see also Example 2.1).

Now consider the language L = {(acb)n(bca)n|n ≥ 0}∪{(bca)n(acb)n|n ≥ 0} over
the alphabet Σ = {a, b, c}. It is easy to see that L ∈ CO. Let h be the morphism
defined by h(a) = a, h(b) = b, h(c) = λ. Then h(L) = L1 ∪ L2 6∈ CO.

2

Comment. The family CO is closed under intersection with arbitrary languages
and the family NCO is closed under union with arbitrary languages.

¿From the above results it follows that:

Proposition 2.4 Let L1 ∈ CO, L2 ∈ NCO be two languages. Then:

L1L2 ∈ NCO, L1 − L2 ∈ CO, L2 − L1 ∈ NCO.

2

Definition 2.2 Let Σ be a binary ordered alphabet. Two words α, β ∈ Σ∗ are called
palindromicly amicable if the next two assertions hold:

(i) α = mi(α), β = mi(β), i.e., α and β are palindromes,

(ii) α and β have the same Parikh vector, i.e., Ψ(α) = Ψ(b).

For two words x, y ∈ Σ∗, we define the relation ≡pa as follows:
x ≡pa y iff there are α, β ∈ Σ+ palindromicly amicable such that x = uαv, y =

uβv, where u and v are words.
The reflexive and transitive closure of ≡pa is denoted by ≡∗pa.
Note that the relation ≡∗pa is a congruence.
In [1] it is proved the following:

Theorem 2.1 If x, y ∈ Σ∗, where Σ = {a < b}, then:

ΨM(x) = ΨM(y) if and only if x ≡∗pa y.

2

If α is a word, then the equivalence class of α is denoted by α̂, i.e., α̂ = {β|α ≡∗pa

β}.
The class CO of codifiable languages can be divided into two subclasses:
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(i) The class SCO of strong codifiable languages. A language L is in SCO iff for
any w ∈ L, card(ŵ) = 1.

(ii) The class WCO of weak codifiable languages. A language L is in WCO iff for
all w ∈ L with card(ŵ) > 1, it follows that ŵ ∩ L = {w}.

Example 2.2 The language L = {anbn|n ≥ 0} is a strong codifiable language.
A word anbn has no other words palindromicly amicable to it. Thus, a matrix


1 n n2

0 1 n
0 0 1


 defines only one word in {a < b}∗, namely anbn ∈ L.

Also, all thin languages are strong codifiable.

2

Example 2.3 The language L = {aib2aj|0 ≤ i ≤ j} is weak codifiable. For in-
stance, if w = ab2a3, then ŵ = {ab2a3, ba2ba2}, and thus:

ΨM(ab2a3) = ΨM(ba2ba2) =




1 4 2
0 1 2
0 0 1


.

Note that ŵ ∩ L = {w} = {ab2a3}.

2

Obviously, CO = SCO ∪WCO.

Conjecture: The family SCO contains only languages where the Parikh vector
mapping is injective.

It is not known yet whether there are languages over Σ that are strong codifiable
for a peculiar order on Σ and weak codifiable for another order.

2

3 Context-free languages and the Parikh matrix

mapping

In this section we present some problems concerning context-free languages and the
Parikh matrix mapping.

Let Σ be an ordered alphabet with k letters and L ⊆ Σ∗ be a codifiable context-
free language. Thus:

(i) for each matrix X ∈Mk+1 there is at most one word w ∈ L with ΨM(w) = X
and

(ii) there is a context-free grammar G = (VN , Σ, S, P ) with L(G) = L.
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The following problem, (P1), is important: having a matrix X ∈Mk+1, does it
exist a word w ∈ L such that ΨM(w) = X?

Note that the above problem (P1) is obviously decidable. For a given matrix
X ∈ Mk+1, the set FX = Ψ−1

M (X) is a finite set. Note that (P1) has asolution if
and only if L ∩ FX 6= ∅. Since L is a context-free language, the last condition is
decidable.

In the sequel we present a different method of a smaller complexity. The method
is based on the Earley algorithm.

We present the method only for the binary alphabet Σ = {a < b}. It is easy to
extend this method to the general case.

Note that each matrix X ∈ M3, X =




1 i k
0 1 j
0 0 1


, is completely determined

by the vector (i, j, k). If X = ΨM(α), where α ∈ Σ∗, then i = |α|a, j = |α|b, k =
|α|scatt−ab.

A generalised Earley configuration is a quadruple:

[A −→ α.β, n, (i, j, k), γ]

where:

• A −→ αβ ∈ P ;

• 1 ≤ n ≤ i + j;

• (i, j, k) corresponds to a matrix from M3;

• γ ∈ Σ∗ is a possible prefix of w.

The algorithm enumerates the sets of all configurations Im (0 ≤ m ≤ i + j + 1).
Its formal definition is:

Input:

A context-free grammar G = (VN , {a, b}, S, P ) and a matrix:

X =




1 x z
0 1 y
0 0 1


 ∈M3.

The initial step (the construction of I0):

The set I0 contains the configuration [S ′ −→ .$S, 1, (0, 0, 0), λ], where S ′, $ 6∈ VN .

The iterative step (the construction of Im+1, 0 ≤ m ≤ x + y):
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• If [S ′ −→ .$S, 1, (i, j, k), γ] ∈ Im, then [S ′ −→ $.S, 1, (i, j, k), γ] ∈ Im, and all
its closures are introduced in Im+1.

• For each configuration [A −→ α.aβ, n, (i, j, k), γ] ∈ Im with i < x, the new
configuration [A −→ αa.β, n, (i+1, j, k), γa] and all its closures are introduced
in Im+1.

• For each configuration [A −→ α.bβ, n, (i, j, k), γ] ∈ Im with j < y and k+i ≤ z,
the new configuration [A −→ αb.β, n, (i, j + 1, k + i), γa] and all its closures
are introduced in Im+1.

Note that there are two possible closures of a configuration:

(i) If [A −→ α.Bβ, n, (i, j, k), γ] ∈ Im+1, then [B −→ .u,m + 1, (i, j, k), γ] and its
closures will be added to Im+1, for all productions B −→ u ∈ P .

(ii) If [A −→ α., n, (i, j, k), γ] ∈ Im+1, then we enumerate all configurations [B −→
u.Av, p, (i1, j1, k1), γ1] ∈ In. For each such configuration, we add to Im+1 the
configuration [B −→ uA.v, p, (i, j, k), γ] and its closures.

The final step:

If [S ′ −→ $S., 1, (x, y, z), w] ∈ Ix+y+1, then w is the word from L with ΨM(w) =
X; otherwise, for X there is no α ∈ L such that ΨM(α) = X.

Theorem 3.1 Assume that X =




1 x z
0 1 y
0 0 1


 ∈M3. If there is a word w ∈ L with

ΨM(w) = X, then [S ′ −→ $S., 1, (x, y, z), w] ∈ Ix+y+1; otherwise, Im+1 contains no
such configuration.

Proof. If one ignores the last two components of a configuration in the con-
struction we made above, the original Earley algorithm is obtained. In this case
w ∈ {a, b}∗, |w| = n, is a word from L iff [S ′ −→ $S., 1] ∈ In+1.

The fourth component builds the new Parikh matrix after a new letter is en-
countered. Namely, if the m-th letter is a, then:


1 i k
0 1 j
0 0 1







1 1 0
0 1 0
0 0 1


 =




1 i + 1 k
0 1 j
0 0 1


.

This means that (i, j, k) is transformed in (i+1, j, k). If the integer i+1 is greater
than the number x of a from the final expected word, then this configuration fails.

In a similar way, if the m-th letter is b, then:


1 i k
0 1 j
0 0 1







1 0 0
0 1 1
0 0 1


 =




1 i k + i
0 1 j + 1
0 0 1


.

9



This means that (i, j, k) is transformed in (i, j+1, k+i). The condition j+1 ≤ y
is necessary to bound the number of b to a maximum y.

The last component of a configuration keeps the last letter encountered (a or b).
If the algorithm succeeds, then the word w is found and its length is x + y.

2

Corollary 3.1 If [A −→ α.β, n, (i, j, k), γ] ∈ Im+1, then ΨM(γ) =




1 i k
0 1 j
0 0 1


.

2

Comment. Note that the above algorithm has the same complexity as the Earley
algorithm. Hence it is a deterministic polynomial time algorithm.

Example 3.1 Let us suppose that L = {aibbaj|0 ≤ i ≤ j} ∈ WCO is a context-free
language generated by the grammar with the rules:

S −→ aSa, S −→ Sa, S −→ bb.

We solve the problem (P1) for the matrix X =




1 4 2
0 1 2
0 0 1


.

Thus, the sets of configurations I0, . . . , I7, iteratively generated, are depicted in
Figure 1.

2
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I0 [S ′ −→ .$S, 1, (0, 0, 0), λ]

I1

[S ′ −→ $.S, 1, (0, 0, 0), λ]
[S −→ .aSa, 1, (0, 0, 0), λ]
[S −→ .Sa, 1, (0, 0, 0), λ]
[S −→ .bb, 1, (0, 0, 0), λ]

I2

[S −→ a.Sa, 1, (1, 0, 0), a]
[S −→ .aSa, 2, (1, 0, 0), a]
[S −→ .Sa, 2, (1, 0, 0), a]
[S −→ .bb, 2, (1, 0, 0), a]
[S −→ b.b, 1, (0, 1, 0), b]

I3

[S −→ a.Sa, 2, (2, 0, 0), aa]
[S −→ .aSa, 3, (2, 0, 0), aa]
[S −→ .Sa, 3, (2, 0, 0), aa]
[S −→ .bb, 3, (2, 0, 0), aa]
[S −→ b.b, 2, (1, 1, 1), ab]
[S −→ bb., 1, (0, 2, 0), bb]
[S ′ −→ .$S, 1, (0, 2, 0), bb]
[S −→ S.a, 1, (0, 2, 0), bb]

I4

[S −→ a.Sa, 3, (3, 0, 0), a3]
[S −→ .aSa, 4, (3, 0, 0), a3]
[S −→ .Sa, 4, (3, 0, 0), a3]
[S −→ .bb, 4, (3, 0, 0), a3]
[S −→ b.b, 3, (2, 1, 2), a2b]
[S −→ bb., 2, (1, 2, 2), ab2]
[S −→ aS.a, 1, (1, 2, 2), ab2]
[S −→ S.a, 2, (1, 2, 2), ab2]
[S −→ Sa., 1, (1, 2, 0), b2a]
[S ′ −→ $S., 1, (1, 2, 0), b2a]
[S −→ S.a, 1, (1, 2, 0), b2a]

I5

[S −→ a.Sa, 4, (4, 0, 0), a4]
[S −→ .aSa, 5, (4, 0, 0), a4]
[S −→ .Sa, 5, (4, 0, 0), a4]
[S −→ .bb, 5, (4, 0, 0), a4]
[S −→ aSa., 1, (2, 2, 2), ab2a]
[S −→ Sa., 2, (2, 2, 2), ab2a]
[S −→ Sa., 1, (2, 2, 0), b2a2]
[S −→ aS.a, 1, (2, 2, 0), b2a2]
[S −→ S.a, 1, (2, 2, 0), b2a2]
[S ′ −→ $S., 1, (2, 2, 0), b2a2]
[S ′ −→ $S., 1, (2, 2, 2), ab2a]
[S −→ aS.a, 1, (2, 2, 2), ab2a]
[S −→ S.a, 1, (2, 2, 2), ab2a]

I6

[S −→ Sa., 1, (3, 2, 2), ab2a2]
[S −→ aSa., 1, (3, 2, 0), b2a3]
[S −→ Sa., 1, (3, 2, 0), b2a3]
[S −→ aSa., 1, (3, 2, 2), ab2a2]
[S −→ S.a, 1, (3, 2, 0), b2a3]
[S −→ S.a, 1, (3, 2, 2), ab2a2]
[S ′ −→ $S., 1, (3, 2, 2), ab2a2]
[S ′ −→ $S., 1, (3, 2, 0), b2a3]
[S ′ −→ $S., 1, (3, 2, 2), ab2a2]

I7

[S −→ Sa., 1, (4, 2, 2), ab2a3]
[S ′ −→ $S., 1, (4, 2, 2), ab2a3]
[S −→ S.a, 2, (4, 2, 2), ab2a3]
[S −→ S.a, 1, (4, 2, 0), b2a4]
[S −→ Sa., 1, (4, 2, 0), b2a4]
[S ′ −→ $S., 1, (4, 2, 0), b2a4]

Figure 1

Theorem 3.2 Let Σ = {a < b} be an ordered binary alphabet and consider L ⊆ Σ∗

a context-free language. There exists a context-free attributed grammar G such that,
for each w ∈ L, G computes the Parikh matrix ΨM(w).

Proof. Let G′ = (VN , Σ, S, P ) be a context-free grammar in the Greibach normal
form such that L(G′) = L. Since Σ is a binary alphabet, the rules from P are of the
form: A −→ aα, A −→ bβ, A −→ λ, where α, β ∈ Σ∗.

Consider a new starting symbol S ′ and the attributes na, nb, nab.
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The rules from P are extended with the attributes as follows:
A −→ aα na := na + 1;
A −→ bβ nb := nb + 1, nab := nab + na.
A −→ λ no attributes.
The first rule is:
S ′ −→ S na := 0, nb := 0, nab := 0.
It is easy to see that after a leftmost derivation the result is:
S ′ =⇒∗ w with |w|a = na, |w|b = nb, |w|scatt−ab = nab.

2

Example 3.2 Consider the language L = {anbn|n ≥ 0} that is generated by the
following context-free grammar in the Greibach normal form:

S −→ aSB|λ, B −→ b
The attributed grammar is:
S ′ −→ S na := 0, nb := 0, nab := 0.
S −→ aSB na := na + 1;
B −→ b nb := nb + 1, nab := nab + na;
S −→ λ.
Consider the word aabb with the leftmost derivation:
S ′ =⇒ S(0,0,0) =⇒ aSB(1,0,0) =⇒ aaSBB(2,0,0) =⇒ aaBB(2,0,0) =⇒ aabB(2,1,2)

=⇒ aabb(2,2,4).

Hence ΨM(aabb) =




1 na nab

0 1 nb

0 0 1


 =




1 2 4
0 1 2
0 0 1


 .

2

Remark 3.1 Note that the grammar G is not necessarily an unambiguous grammar.
Also, note that G is not an attributed grammar in the classical sense. However,

one can define an attributed grammar in the classical sense having the same property.

4 Conclusion

We found new properties related to the injectivity of the Parikh matrix mapping.
However, most of these properties are proved for binary alphabets. It remains to
investigate which of these properties can be extended to alphabets with more than
two letters.
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