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Using the fact that the Parikh matrix mapping is not an injective mapping, the paper

investigates some properties of the set of the binary words having the same Parikh

matrix; these words are called “amiable” Some results concerning the conditions when
the equivalence classes of amiable words have more than one element, a characterization
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some basic properties of a rank distance defined on these classes are the main subjects
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1. Introduction

In this paper we investigate some properties of the Parikh matrix mapping defined
only for the binary alphabet. The Parikh matrix mapping (introduced in [6]) is an
extension of the Parikh mapping ([7]). The extension is based on a special type of
matrices, where the classical Parikh vector appears as the second diagonal.

First of all, let us start with some basic notations and definitions. The set of
all nonnegative integers is denoted by N . Let Σ be an alphabet. The set of all
words over Σ is Σ∗; if λ is the empty word, then the set of nonempty sequences is
Σ+ = Σ∗ \ {λ}. For α ∈ Σ∗, |α| denotes the length of α. Besides, for any finite set
A we denote |A| the number of elements contained by A.

The mirror image of a word α ∈ Σ∗, denoted mi(α), is defined as: mi(λ) =
λ, mi(a1a2 . . . an) = an . . . a2a1, where ai ∈ Σ, 1 ≤ i ≤ n. A word α is a “palin-
drome” iff α = mi(α).

∗This paper is dedicated to my colleague and friend Alexandru Mateescu, the first author of Parikh

matrix mapping.
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The alphabet used in this paper is a binary ordered alphabet Σ = {a, b} where
a relation of order (“<”) is defined. Without loss of generality, we consider a < b.

Let x ∈ Σ be a letter. The number of occurrences of x in a word α ∈ Σ∗ is
denoted by |α|x. Let u, v be words over Σ. The word u is a scattered subword of v if
there exists a word w such that v ∈ shuffle(u, w). We denote by |α|ab the number
of occurrences of u = ab in v = α as a scattered subword. For instance |abab|ab = 3.

For the binary ordered alphabet Σ = {a < b}, the Parikh mapping is a mapping
Ψ : Σ∗ −→ N 2

defined as Ψ(α) = (|α|a, |α|b). This couple represents the Parikh vector of α.

Definition 1. Let Σ = {a < b} be a binary ordered alphabet and M3 be the set of
3-dimensional upper-triangular matrices with nonnegative integral entries and unit
diagonal. The Parikh matrix mapping, denoted by ΨM : Σ∗ −→ M3 is defined as
follows: For each α ∈ Σ∗

ΨM (α) =

1 x z

0 1 y

0 0 1


where x = |α|a, y = |α|b, z = |α|ab.

We denote ΨM (α) also by Mα.
A matrix M ∈ M3 with the property M = Mα for a particular word α ∈ Σ∗ is

called Parikh matrix.
In [1, 2] some general properties of the Parikh matrices were proved; for example

Mαβ = MαMβ , ∀α, β ∈ Σ∗.

Remark 1. This equation was the defining one for Parikh matrix mappings in the
original reference ([6]).

Definition 2. Two words α, β ∈ Σ∗ are called “amiable” iff Mα = Mβ.

In [1] the notion of “palindromic amiable” words is defined; the supplementary
condition required is that the words α, β are palindromes.

Denote by α ∼a β the property that α and β are amiable words.
The relation ∼a is obviously an equivalence relation (in [4] is defined a congru-

ence relation ≡2 very close to ∼a).
In [1] another equivalence relation is defined. Namely:
x ≡pa y iff ∃ α, β ∈ Σ+ palindromic amiable words so that x = uαv, y = uβv.
≡∗

pa is the reflexive and transitive closure of ≡pa.

Example 1. aabbabaaa ≡∗
pa babaaaaab. Indeed,

a abba︸︷︷︸ baaa ≡pa ab aabbaa︸ ︷︷ ︸ a ≡pa abba︸︷︷︸ aaaba ≡pa ba abaaaba︸ ︷︷ ︸ ≡pa babaaaaab.

The next result can be proved using Theorem 3.9 ([1]):

Proposition 1. For any α, β ∈ Σ∗, α ∼a β ⇐⇒ α ≡∗
pa β.
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Regarding other issues about Parikh matrix mapping (in general form), as well
as for language-theoretic considerations not detailed here, the reader is referred to
[2, 4, 5, 8, 9] and the references given therein.

2. Classes of binary amiable words

The first part of this section contains some direct computational proofs of the results
concerning Parikh matrix mappings presented in the literature.

Let Σ = {a < b} be a binary ordered alphabet. A general result about binary
amiable words is:

Lemma 1.

(1) If α1, α2, β1, β2 ∈ Σ∗, α1 ∼a β1, α2 ∼a β2, then α1α2 ∼a β1β2.
(2) If α, β, γ ∈ Σ∗, then αabβbaγ ∼a αbaβabγ.

Proof. The first assertion is obvious.
Because a Parikh matrix always has an inverse, for the second assertion, it is

enough to prove the equality MabMβMba = MbaMβMab. Indeed, if

Mab =

1 1 1
0 1 1
0 0 1

 , Mba =

1 1 0
0 1 1
0 0 1

 , Mβ =

1 x z

0 1 y

0 0 1


then

MabMβMba = MbaMβMab =

1 x + 2 x + y + z + 2
0 1 y + 2
0 0 1


As a remark, abba ∼a baab; moreover, abba and baab are the only binary amiable

words of minimal length.
For a word α ∈ Σ∗ we denote by Cα its equivalence class:

Cα = {β ∈ Σ∗ | β ∼a α}

An obvious isomorphism can be established between the multiplicative group of
3× 3 Parikh matrices and the group of classes Cα with the rule Cα ◦ Cβ = Cαβ .

The main problem we whish to solve in this section is:

Given a Parikh matrix Mα =

1 p q

0 1 n

0 0 1

 with n, p, q ∈ N , how many

words does Cα contain ?
In particular, under which conditions Cα = {α} ?

In [1] a recursive function is defined for computing the value |Cα|. We try in this
section to simplify the answer and to complete those results.
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Let α ∈ Σ+ be a binary sequence (the case α = λ is trivial and will be ignored);
α can be represented in the following form (by detailing the appareances of letter
b):

α = ax1bax2b . . . axnbaxn+1 (xi ≥ 0) (1)

The Parikh matrix Mα =

1 p q

0 1 n

0 0 1

 corresponds to this word if and only if

(x1, x2, . . . , xn+1) ∈ Nn+1 is a solution of the system{
x1 + x2 + . . . + xn−1 + xn + xn+1 = p

nx1 + (n− 1)x2 + . . . + 2xn−1 + xn = q
(2)

It is clear that for every solution of this system there is a corresponding sequence
in Cα and vice-versa. Therefore the number of solutions of the system (2) equals
|Cα|.

Remark 2. The number of solutions of the system (2) equals also the number of
solutions of the equation x1 + x2 + . . . + xn = q where xi ∈ N (1 ≤ i ≤ n) and
0 ≤ x1 ≤ . . . ≤ xn ≤ p (see [1]).

Example 2. Let M =

1 2 4
0 1 4
0 0 1

 be a Parikh matrix with p = 2, q = 4, n = 4. The

associated system is

x1 + x2 + x3 + x4 + x5 = 2
4x1 + 3x2 + 2x3 + x4 = 4

This system with 5 variables has three solutions in N 5. Namely:

(1) (x1, x2, x3, x4, x5) = (1, 0, 0, 0, 1) which corresponds to the word β1 = abbbba;
(2) (x1, x2, x3, x4, x5) = (0, 1, 0, 1, 0) which corresponds to the word β2 = babbab;
(3) (x1, x2, x3, x4, x5) = (0, 0, 2, 0, 0) which corresponds to the word β3 = bbaabb.

Thus the set of sequences with the Parikh matrix M is C = {abbbba, babbab, bbaabb}.

The following result is not new (see [5]). We give a proof based on considerations
concerning the system (2). A similar remark applies for Theorem 2.

Theorem 1. Let M =

1 p q

0 1 n

0 0 1

 be a matrix with p, q, n ∈ N . M is a Parikh

matrix iff q ∈ [0, n · p].

Proof. If M is a Parikh matrix, there is at least one binary word α of the type
(1) which verifies the system (2). We have to prove that for this word the relations
x1 + x2 + . . . xn + xn+1 = p and nx1 + (n− 1)x2 + . . . + xn ≤ np are fulfilled. The
equality results directly from the construction of (1).
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To prove the inequality, let us evaluate
n∑

i=1

(n + 1 − i)xi = n
n∑

i=1

xi −
n∑

i=1

(i − 1)xi = n(p − xn+1) −
n∑

i=1

(i − 1)xi =

np−
n+1∑
i=1

(i− 1)xi ≤ n · p

Because xi ∈ N , the values are at least 0.
Now we prove the “if” part of the theorem.
Assume that n, p, q ∈ N such that q ≤ n ·p. Then a solution (x1, x2, . . . , xn+1) ∈

Nn+1 of the system (2) can be

x1 =
⌊ q

n

⌋
, xi+1 =

⌊
q −

∑i
j=1(n + 1− j)xj

n− i

⌋
(1 ≤ i ≤ n−1), xn+1 = p−

n∑
i=1

xi (3)

Checking that (3) is a solution is easy.

Remark 3. In the cases n = 0 or p = 0 we immediately conclude that q = 0. So,
in the following there will be treated only the nontrivial situations n · p 6= 0.

For the next theorem, a preliminary result is necessary:

Lemma 2. If Mα =

1 p q

0 1 n

0 0 1

 then Mmi(α) =

1 p n · p− q

0 1 n

0 0 1

.

Proof. Let us consider α = ax1bax2b . . . axnbaxn+1 (xi ≥ 0), which corresponds to
the system (2). Then for mi(α) = axn+1baxnb . . . ax2bax1 will correspond a system
in which the first equation is the same, but the second equation is

nxn+1 + (n− 1)xn + . . . + x2 = A

where A is a value to be found.
We evaluate n · p = n(x1 + x2 + . . . + xn+1) = [nx1 + (n − 1)x2 + . . . + xn] +

x2 + 2x3 + . . . + nxn+1 = q + A. Thus A = n · p − q and the system built for the
word mi(α) corresponds to the Parikh matrix Mmi(α) defined above.

Theorem 2. Let α ∈ Σ+ be a binary word with the Parikh matrix

Mα =

1 p q

0 1 n

0 0 1

 , p, q, n ∈ N . For each of the cases

(1) n ≤ 1;
(2) p ≤ 1;
(3) q ∈ {0, 1, n · p− 1, n · p},

|Cα| = 1 (thus Cα = {α}) holds.
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Proof.

(1) For n = 0 (thus q = 0) there is only one sequence: α = ap. For n = 1 (therefore,
accordingly with the Theorem 1, p ≤ q) there is again only one solution: α =
aqbap−q.

(2) Similarly.
(3) We have to prove that for the values of q given above, the system (2) has only

one solution.
Using Lemma 2 we conclude that |Cα| = |Cmi(α)|; therefore it is enough to

prove the assertion only for values q = 0 and q = 1.
We consider each case.

• q = 0: The diophantine equation nx1 + (n− 1)x2 + . . . + xn = 0 has only
one solution: xi = 0 (i = 1, . . . , n). By replacing these values in the first
equation of the system (2) we obtain xn+1 = p. Therefore the solution
(0, . . . , 0, p) is unique and corresponds to the binary word α = bnap.

• q = 1: The diophantine equation nx1 + (n − 1)x2 + . . . + xn = 1 has the
unique solution x1 = x2 = . . . = xn−1 = 0, xn = 1. By replacing it in the
first equation of the system (2) we obtain xn+1 = p− 1.
The constraint 1 ≤ n · p (obtained from Theorem 1 with q = 1) assures
n ·p 6= 0; in peculiar, p ≥ 1, n ≥ 1, thus the solution (0, . . . , 0, 1, p−1) can
be constructed. It is unique and corresponds to the word α = bn−1abap−1.

Theorem 3. Let α ∈ Σ+ with the Parikh matrix Mα =

1 p q

0 1 n

0 0 1

. If n ≥ 2, p ≥ 2

and q ∈ [2, n · p− 2], then |Cα| ≥ 2.

Proof. Two cases are possible:

(1) p ≥ q: Let us denote p = q + s (s ≥ 0). Using the hypothesis, (0, . . . , 0, t, q −
2t, t + s) (with 0 in the first n − 2 positions) is a solution of the system (2).
It corresponds to the word α = bn−2atbaq−2tbat+s. The constraint q − 2t ≥ 0
assures a distinct solution for each t ∈

[
0,

q

2

]
. Because q ≥ 2, there are at least

two solutions, therefore |Cα| ≥ 2.
(2) p < q: We know that (3) is a solution of the system (2).

For another (distinct) solution, let us consider q = s · p + r with 1 ≤ s <

n, 0 ≤ r < p. Then

xn−s = r, xn−s+1 = p− r, xi = 0 (i 6= n− s, n− s + 1)

is a solution for the system (it corresponds to the sequence bn−s−1arbap−rbs).
Indeed, the first equation is verified with r + (p − r) = p, and the second

with (s + 1)r + s(p− r) = s · p + r = q.
The fact that these two solutions are distinct can be easily proven.
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Theorems 2 and 3 cover all cases. Therefore all the cases when Cα = {α} are
defined by the Theorem 2.

Corollary 1. Let L ⊆ {a, b}∗ and W = a∗b∗ + a∗bab∗ + a∗ba∗ + b∗ab∗. The Parikh
matrix mapping Ψ : L −→M3 is injective iff L ⊆ W ∪mi(W ).

Unfortunately it is not easy to check an upper limit for the number of words
which are amiable with a given binary word α. The recursive mapping

φ(q, p, n) =
min{p,q}∑

i=0

φ(q − i, i, n− 1), φ(q, p, 1) =
{

1 , q ≤ p

0 , q > p

established in [1] (Theorem 4.7) is difficult to be evaluated.
The next Theorem assures only a weak lower bound of this limit:

Theorem 4. There is at least a word α ∈ Σ+ with |Cα| ≥ 1
n·p+1

(
n + p

p

)
.

Proof. For two given values n, p ∈ N exist
(

n + p

p

)
binary sequences with p a′s

and n b′s. For each q ∈ [0, n · p] exists (Theorem 1) a Parikh matrix, thus there
exists at least a word α ∈ Σ∗. There are n · p + 1 possible classes of amiable words,
thus at least one of them will contain a number of binary words greater than or
equal to the average.

Some results are obvious:

Proposition 2.

(1) If q1 < q2 ≤
⌊n · p

2

⌋
then |Cα1 | ≤ |Cα2 |, where Mαi

=

1 p qi

0 1 n

0 0 1

 , i = 1, 2.

(2) If q1 + q2 = n · p then |Cα1 | = |Cα2 |.

Corollary 2. For a fixed Parikh vector Ψ = (p, n), max
Ψ(α)=Ψ

{|Cα|} is established for

q =
⌊n · p

2

⌋
.

Example 3. Let us consider p = 19, n = 2. The next table shows |Cα| for q =

1, 2, . . . 38, where Mα =

1 19 q

0 1 2
0 0 1

:

The lower bound given by Theorem 4 is
1
39

(
21
2

)
= 5, 7. There are 19 classes

Cα which verify this Theorem.
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Table 1. The table of amiable binary words having the Parikh vector Ψ = (19, 2).

q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

|Cα| 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 10 9 9 8 8 7 7 6 6 5 5
q 31 32 33 34 35 36 37 38

|Cα| 4 4 3 3 2 2 1 1

Table 2. The table of amiable binary words having the Parikh vector Ψ = (10, 10).

q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

|Cα| 1 1 2 3 5 7 11 15 22 30 42 54 73 93 121 152 193 237 295 356 433 515 615

q 23 24 25 26 27 28 29 30 31 32 33 34 35 36

|Cα| 720 847 978 1131 1289 1420 1652 1860 2065 2293 2517 2761 2994 3246
q 37 38 39 40 41 42 43 44 45 46 47 48 49 50

|Cα| 3481 3729 3956 4192 4397 4609 4784 4959 5095 5226 5311 5392 5424 5448

Example 4. For the values p = 10, n = 10 the table is (we reprezent only the
values q = 0, 1 . . . , 50):

The lower bound given by the Theorem 4 is
1

101

(
20
10

)
= 1829, 27.

There are 43 sets which exceed this limit.

We made many other tests; it seems that if we set a Parikh vector and construct
all the n · p + 1 classes Cα corresponding to all values q, then at least 40% of them
verify Theorem 4. This percentage equals 100% if and only if the Parikh matrix
mapping is injective.

3. Theorem of characterization for amiable words

In this section we will consider an equivalence class C, corresponding to a given
Parikh matrix M .

Let us define the unoriented graph ΓM = (V,E) as follows:

• V = C;
• (α, β) ∈ E ⇐⇒ ∃γ1, γ2, γ3 ∈ {a, b}∗, α = γ1abγ2baγ3, β = γ1baγ2abγ3.

From Lemma 1 it results that the sequences α, β are amiable, thus they belong to
the same equivalence class.

The main result of this section is:

Theorem 5. The graph ΓM is connected.

Proof. The assertion is trivial for |C| = 1.
Let us consider only the situation studied by the Theorem 3. We have to show

that for every α, β ∈ C there exists a path between the nodes α and β; hence there
is a sequence of transformations of the type ab − ba by which the word β can be
obtained from α (and vice-versa).
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On the set C we define the next derivation rule:

∀α, β ∈ C

{α =⇒ β} ⇐⇒ {∃γ1, γ2, γ3 ∈ {a, b}∗, α = γ1abγ2baγ3, β = γ1baγ2abγ3}

Lemma 1 assures that this derivation is well defined on C. For α ∈ C we can
apply this rule as long as it is possible. Because, sometimes, several variants may
appear on each step, we will define a constraint in order to choose only one contin-
uation. Namely

(i) Let α = ax1bax2b . . . axnbaxn+1 ∈ C and xi, xj be the first two positive
exponents such that j > i+1. Then we can write α =⇒ β, where α = γ1a

xibγ2ba
xj γ3

and β = γ1a
xi−1baγ2abaxj−1γ3.

This rule cannot be applied when there remain at most two positive exponents.
In more detail:

• If there remains only one positive exponent, then α has the form α = b∗apb∗;
• If two consecutive positive exponents remain, then α has the form α =

b∗a+ba+b∗

For each of the two cases discussed in the proof of Theorem 3, the word (denoted
α0) when the derivation rule cannot be applied accordingly to the constraint (i) is
unique.

Let q = s · p + r where 0 ≤ s < n, 0 ≤ r < p (the case s = 0 covers the variant
q < p). Then

α0 = bn−s−1arbap−rbs

Therefore, for each α ∈ C we have a (possible empty) sequence α =⇒ . . . =⇒ α0.
In the graph ΓM associated to C, this assures (at least) one path from the node

α to the node α0.
The theorem results now from the fact that the graph ΓM is unoriented: for each

α, β ∈ C, (α 6= β) there is a path between α and β which goes through α0.

Example 5. Let n = p = 4, q = 8. The system (2) has eight solutions which
correspond to the set of amiable words C = {aabbbbaa, ababbaba, abbaabba, baabbaab,

babaabab, bbaaaabb, baababba, abbabaab}
Using the derivation rule defined above, we can construct the graph ΓM (Figure 1).

The word α0 considered by the constraint (i) is α0 = bbaaaabb.
It can be considered as the unique representative of the equivalence class.

Conjecture: If C
⋂

b∗a∗b∗ = ∅ then the graph ΓM is hamiltonian. Otherwise,
for every i = 3, 4, . . . , |C| − 2 there exists at least a loop with i elements.

Let α, β ∈ C, α = a1a2 . . . an, β = b1b2 . . . bn be two words with the same
Parikh vector; the Rank distance dR(α, β) (defined by L. P. Dinu and A. Sgarro;
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bbaaaabb babaabab abbaabba ababbaba

aabbbbaa

abbabaab

baabbaab baababba

Fig. 1. The graph ΓM obtained for n = p = 4, q = 8.

see [3]) counts the number of places between the similar characters from α and β.

Formally:

dR(α, β) =
∑
x∈α

|ordα(x)− ordβ(x)|

where ordu(x) represents the position of the character x in the string u, counted
from the left to right.

Example 6. dR(abba, baab) = 4, dR(babaabab, aabbbbaa) = 12.

Theorem 6. Let α, β ∈ C. Then dR(α, β) = 4k where k is the shortest path length
in ΓM between α and β.

Proof. We will associate to each edge α− β from ΓM an ordered pair on integers
(p, q), as following:

α = x1x2 . . . xn, β = y1y2 . . . yn and
xi = yi ∀i 6∈ {p, p + 1, q, q + 1},
xp = xq+1 = yp+1 = yq = a,

xp+1 = xq = yp = yq+1 = b.
The order of integers p, q depends on the direction of passing the edge.
So, by example, for α = abbababa, β = abbbaaab, the pair corresponding to the

edge α− β is (4, 7), and for the edge β − α is (7, 4).
The construction of the graph ΓM assures the constraint |p− q| ≥ 2.
Let α = α0 −→ α1 −→ . . . −→ αs = β be a path in ΓM of length s, in which

all nodes are distinct (otherwise there is a loop which can be avoided). To this
path from α to β we will associate a set of pairs {(p1, q1), (p2, q2), . . . (ps, qs)} with
elements from {1, 2, . . . , |α| − 1}, where

{p1, p2, . . . , ps} ∩ {q1, q2, . . . , qs} = ∅.

The construction of this set will be inductively obtained as follows:
For s = 1 we have the construction defined above (s = 1 and the set {(p, q)}).
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Let us consider the construction defined for all paths of lengths at most s and
let α, β be two distinct nodes separated by a path of length s + 1. Let

α −→ . . . −→ αs −→ β

be this path, where the first s edges have the set of pairs defined in hypothesis, and
the edge αs −→ β has associated the pair (p, q). Four situations may appear:

(1) q 6∈ {p1, . . . , ps}, p 6∈ {q1, . . . , qs}. Then the set of pairs associated to the path
α0

∗−→ β (of length s + 1) is {(p1, q1), (p2, q2), . . . (ps, qs), (p, q)}.
(2) q 6∈ {p1, . . . , ps}, p ∈ {q1, . . . , qs}. Therefore there exists i (1 ≤ i ≤ s) having

p = qi. It results that between the nodes α and β there exists also a path of
length s, and the set of pairs associated to it is

{(p1, q1), . . . (pi−1, qi−1), (pi, q), (pi+1, qi+1), . . . (ps, qs)}.
(3) q ∈ {p1, . . . , ps}, p 6∈ {q1, . . . , qs}. Thus there exists i (1 ≤ i ≤ s) with q = pi.

Like in the previous situation, it results that between the nodes α and β there
exists also a path of length s, and the set of pairs associated to it is

{(p1, q1), . . . (pi−1, qi−1), (p, qi), (pi+1, qi+1), . . . (ps, qs)}.
(4) q ∈ {p1, . . . , ps}, p ∈ {q1, . . . , qs}. Then there exist i, j ∈ {1, . . . , s} with q =

pi, p = qj . We can suppose i < j (the case i > j is similar). Then in the graph
ΓM , will exist also a path of length s− 1 between α and β, and the set of pairs
associated to it is

{(p1, q1), . . . (pi−1, qi−1), (pi+1, qi+1), . . . (pj−1, qj−1), (pj , qi), (pj+1, qj+1), . . .}

A singular variant is i = j. Then the pair (pi, qi) is simply avoided from the set
and the length of the path having this new set of pairs is s− 1.

Example 7. Let us consider the binary sequences

u1 = abbbababa, u2 = babbaabba, u3 = bbabaabab, u4 = bbaabbaab

The set asociated to the path u1 −→ u2 is {(1, 6)} and to u1
∗−→ u3 is

{(1, 6), (2, 8)}.
Between u1 and u4 there exists the path u1 −→ u2 −→ u3 −→ u4. The

set associated is {(1, 6), (2, 8), (6, 4)}. Because the integer 6 appears once on
the first position and once on the second position, this set can be reduced to
{(1, 4), (2, 8)}; that means there exists a shorter path between u1 and u4 (via
u5 = bababbaba): see Figure 2.
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��
��

��
��XXXXXXXXX    

   
    

u1 u2 u3 u4

u5

(1,6) (2,8) (6,4)

(2,8)(1,4)

Fig. 2. An example concerning the case (2).
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u1 u2 u3 u4 u5 u6

u8u7

(1,11) (3,7) (5,9) (4,8) (11,4)

(1,8)(5,9)(3,7)

Fig. 3. An example concerning the case (4).

Example 8. Let us consider the words
u1 = abababbababa, u2 = baababbabaab, u3 = bababaababab,

u4 = babbaaaabbab, u5 = babbaaaabbab, u6 = bababaaabbba

Between u1 and u5 there exists the path u1 −→ u2 −→ u3 −→ u4 −→
u5 with the set {(1, 11), (3, 7), (5, 9), (4, 8)}. Let us add the edge u5 −→ u6

having the set {(11, 4)}. Because the components of the pairs from the set
{(1, 11), (3, 7), (5, 9), (4, 8), (11, 4)} are not distinct, there is a shorter path be-
tween u1 and u6. Applying the rule 4, the new set of pairs is {(3, 7), (5, 9),
(1, 8)}; it corresponds to the path u1 −→ u7 −→ u8 −→ u6 (Figure 3), where
u7 = abbaababbaba and u8 = abbabaababba (obviously, u7, u8 are nodes in ΓM ).

Let us consider now α, β ∈ C (α 6= β). Because the graph ΓM is connected, at least
a path between α and β will exist. Let α = α0 −→ α1 −→ . . . −→ αs = β be a path
obtained according to the rules 1. − 4., and (p1, q1)(p2, q2) . . . (ps, qs) be the set of
pairs associated to this path.

The length of this path is minimal. Indeed, if a character x ∈ {a, b} is situated
on the position i in α and on the position j (j 6= i) in β, then the set of pairs
associated using the algorithm above will assure the shift of x always in the same
direction (on right if i < j, respectively on left if i > j). The crossing of one edge
in ΓM assures the shift of x with at most one position (left or right).

We shall prove by induction on s that dR(α, β) = 4s.
s = 1: then α = γ1abγ2baγ3, β = γ1baγ2abγ3 where γ1, γ2, γ3 ∈ {a, b}∗; hence,

obviously, dR(α, β) = 4 = 4 · 1 .
Let us consider the equality verified for any pair of binary words connected by

a path of minimal length s and let α, β ∈ C be two words connected by a path of
minimal length s + 1: α

∗−→ αs −→ β. Then
dR(α, β) = dR(α, αs) + dR(αs, β) = 4k + 4 = 4(k + 1)

This is seen as follows. Every character a situated in one of locations p1, . . . ps, p is
moved one position to the right; therefore the distance between it and the original a

increases by 1; overall, there are s+1 moves. The same thing is happening with the
characters a situated in positions q1 + 1, q2 + 1, . . . , qs + 1, q + 1 (shifted to the left)
and with the characters b situated in positions p1 + 1, . . . , ps + 1, p + 1 (shifted to
left) and respectively q1, q2, . . . , qs, q (shifted to right). Every character (of the words
situated on this path) stays on its place or is moved in only one direction. Because
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{p1, . . . , ps} ∩ {q1, . . . , qs} = ∅, a character moved from an arbitrary position will
not be moved back later on in this position. Therefore the distances from the initial
positions are increasing mappings.

Example 9. Let us construct a table containing the rank distance between all the
words of the class C defined in Example 5.

Table 3. The rank distance between the words defined in Example 5.

aabbbbaa ababbaba abbaabba baababba baabbaab babaabab abbabaab bbaaaabb

aabbbbaa 0 4 8 8 8 12 12 16

ababbaba 4 0 4 4 4 8 4 12

abbaabba 8 4 0 4 8 4 4 8
baababba 8 4 4 0 4 4 8 8

baabbaab 8 4 8 4 0 4 4 8

babaabab 12 8 4 4 4 0 4 4
abbabaab 12 4 4 8 4 4 0 8

bbaaaabb 16 12 8 8 8 4 8 0

All these distances verify the Theorem 6.

We close this section with some considerations regarding palindromes.

Lemma 3. If p = n then Cmi(α) = Cα, where α is obtained from the word α by
replacing the letter a with b and vice-versa.

Lemma 4. Let α, β ∈ Σ∗ be two binary palindromes with the same Parikh vector.
Then α ∼a β.

As a result of this lemma, any binary palindrome α with the Parikh vector
(|α|a, |α|b) fixed, will have the same value for |α|ab, therefore the same Parikh ma-
trix.

Remark 4. From Lemma 4 it results that all palindromes with the same Parikh
vector are amiable and thus they are in the same equivalence class C. But the
reverse is not true: not all words from C are palindromes. For example, consider
n = p = 4, q = 8. However baababba ∼a aabbbbaa, although the second word is
a palindrome and the first word is not a palindrom. See Example 5. This remark
corrects Corollary 3.4 ([1]).

4. Conclusion

The paper considers some issues regarding the binary case of the Parikh matrix
mapping. In Section 2 we want to give a direct computational proof to some results
presented in the literature; also a lower bound for the maximal number of binary
amiable words is presented and discussed. Section 3 introduces a graph associated
to an equivalence class of amiable words and some properties are proved.
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There remain some open problems concerning the extension of the results to
alphabets with more than two letters. The characterisation theorem offers more
information than mentioned here. A separate investigation of properties of amiable
words using the graph will be necessary.
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