
An Algebraic Valuation of Words

Adrian ATANASIU Victor MITRANA

University of Bucharest, Faculty of Mathematics
Str. Academiei 14, 70109, Bucharest, Romania

email: aadrian@pcnet.ro, mitrana@funinf.math.unibuc.ro

Abstract. This paper proposes an algebraic way of sentence valuation
in a semiring. Actually, throughout the paper only valuations in the ring of
integers with usual addition and multiplication are considered. These valua-
tions take into consideration both words and their positions within sentences.
Two synonymy relations, with respect to a given valuation, are introduced.
All sentences that are synonynous form a synonymy class. Some basic prob-
lems regarding the synonymy classes, which are actually formal languages, are
formulated and studied. Some of them are completely solved whereas partial
answers are provided for others.

1 Introduction

A series of paper [1], [2], [4], [5] have dealt with homomorphisms h from a free gen-
erated monoid M to the monoid ((0,∞), ·, 1), so that the sum of all homomorphical
images of generators of M equals 1, called Bernoulli homomorphisms (distribu-
tions, measures). Besides being homomorphisms, Bernoulli homomorphisms may
be viewed as probability measures on the family of all languages over a given alpha-
bet. Furthermore, they played an important role in developing the theory of codes
[1]. Some authors discarded the homomorphism property keeping the probability
measure property as done in [4], [5] whilst others proceeded vice versa [3], calling
them valuations.

In this paper, we introduce a generalization of the aforementioned valuations in
the following sense. The value of a word depends not only on its letters but also on
their positions within the word. Furthermore, the valuation is computed in a richer
structure that of a semiring instead of a monoid.

1

2 Definitions and examples

An alphabet is a finite nonempty set whose elements are called letters (symbols); if
V = {a1, a2, . . . , an} is an alphabet, then any sequence w = ai1ai2 . . . aik , 1 ≤ ij ≤
n, 1 ≤ j ≤ k, is called word (string) over V . The length of the aforementioned word
w is denoted by lg(w) and equals k. The empty word is denoted by ε, lg(ε) = 0.
Moreover, (x)U delivers the string obtained from x by removing all letters not in U .
The set of all words over V is denoted by V ∗ and V + = V ∗ − {ε}. For all notions
and notations in formal language theory that are not defined here the reader may
consult [7].

A structure (A, +, ·, 0, 1) is called a semiring iff the following conditions are
satisfied for all a, b, c ∈ A:

(i) (A, +, 0) is a commutative monoid,

(ii) (A, ·, 1) is a monoid,

(iii) a · (b + c) = a · b + a · c, (a + b) · c = a · c + b · c,
(iv) 0 · a = a · 0 = 0.

The semiring (A, +, ·, 0, 1) is said to be commutative iff (A, ·, 1) is a commutative
monoid. For further notions we refer to [6].

Let V be an alphabet and (A, +, ·, 0, 1) be a commutative semiring. A valuating
system of V ∗ is a pair of mappings

φ = (α, β),

where

• α : V −→ A, (the letter attributing function; α(a) is said to be the attribute
of a),

• β : N−→ A, (the position attributing function; β(n) is the attribute of the
position n).

Given a valuating system φ as above and a string x = a1a2 . . . an ∈ V ∗, ai ∈
V, 1 ≤ i ≤ n, we define

valφ(x) =
n∑

i=1

α(ai) · β(i).

Moreover, valφ(ε) delivers always 0, for any valuating system φ.
Two words x, y are equivalent with respect to the valuation system φ, written as

x ∼φ y, iff valφ(x) = valφ(y). The equivalence class of x is defined as

[x]φ = {y ∈ V ∗|x ∼φ y}.

2

Example 1 Let us consider the semiring Z[X] of all polynomials with only one
indeterminate and coefficients in Z together with addition and multiplication. We
consider the valuating system of the alphabet V = {a, b, c, d} over Z[X], φ = (α, β)
defined as follows:

α a b c d

2X2 X2 − 1 1 2X2 − 1

β(i) = X + i, i ∈ N .

It is easy to note that

valφ(dacb) = valφ(aba) = 5X3 + 10X2 −X − 1

which implies dacb ∼φ aba.

Example 2 Take V = {a, b, c} and the valuating system of V ∗ over (Q, +, ·, 0, 1)
φ = (α, β) with

α(a) =
1

2
, α(b) =

1

3
, α(c) = −1

6
β(n) = 5.

The reader may easily verify that

[ε]f = L1 ∪ L2 ∪ L3,

where

L1 = {x|3lg((x)a) = lg((x)c), lg((x)b) = 0},
L2 = {x|2lg((x)b) = lg((x)c), lg((x)a) = 0},
L3 = {x|3lg((x)a) + 2lg((x)b) = lg((x)c)}.

Note that this language is not context-free.
We are going to investigate mainly the equivalence classes. A natural problem

concerns the finiteness of these sets as well as the possibility to decide on this
problem. Furthermore, we are concerning with the problem of finding appropriate
devices (automata, grammars, etc.) which characterize the equivalence classes. To
this end, in this paper we shall only consider the valuation systems over the ring
of integers Z with the usual addition and multiplication. The absolute value of an
integer x is denoted by |x|. In the sequel, we shall foccus our attention on valuating
systems whose function β is either polynomial or exponential.

3

3 The polynomial case

Let x = a1a2 . . . an be a string in V ∗ and φ = (α, β) be a valuating system of V over
Z with

β(n) = c0n
k + c1n

k−1 + . . . + ck.

Denote by
φi = (α, ni), 0 ≤ i ≤ k.

Clearly,

valφ(x) =
k∑

i=0

ci · valφk−i
(x). (1)

The relation stated by the next lemma will be useful in the sequel.

Lemma 1 valφk
(xy) = valφk

(x) +
∑k

i=0(
i
k)lg(x)ivalφk−i

(y).

Proof. Assume that y = y1y2 . . . yp, yj ∈ V, 1 ≤ j ≤ p. Starting from

valφk
(xy) = valφk

(x) +
p∑

j=1

(lg(x) + j)kα(yj)

by a direct calculation one gets the desired equation. 2

Now, we restrict our investigation to two polynomials only: constant and linear.

3.1 The constant polynomial

As [x]φ = V ∗, for all x ∈ V ∗, iff β is the null function, we shall consider only non-zero
position attributing functions. Note that the relations stated by Lemma 1 and (1),
respectively, may be combined in

valφ(xy) = valφ(x) + valφ(y), (2)

relation that the next theorem is based on.

Theorem 1 Let φ = (α, β) be a valuating system of V ∗ over Z.
1. For each x, [x]φ is finite if and only if α(a) · α(b) > 0, for any a, b ∈ V .
2. Given a string x ∈ V ∗, one can decide the finiteness of [x]φ.

Proof. Obviously, the latter assertion immediately follows from the first one. Assume
that α(a) > 0, α(b) > 0, for any a, b ∈ V ; the reasoning is the same when all
attributes of the letters in V are negative. As β is a constant function, say k, for
each x ∈ V + valφ(x) is either positive or negative depending on the sign of k. We
shall only analyse the case when k > 0; the case k < 0 may be treated similarly.
We claim that [x]φ cannot contain strings of length bigger than valφ(x). Indeed, if

4

lg(y) > valφ(x), then valφ(y) > k · valφ(x), hence y /∈ [x]φ. Consequently, [x]φ is
finite.

Now, let us consider that exist a, b ∈ V such that α(a) · α(b) ≤ 0. We claim
that exists y ∈ V + such that valφ(y) = 0. Clearly, y exists if α(a) = 0, for some
a ∈ V . Therefore, it suffices to assume that α(a) · α(b) < 0. One may takes the
string y = a|α(b)|b|α(a)| for which

valφ(y) = k · (α(a) · |α(b)|+ α(b) · |α(a)|) = 0.

In conclusion, by equation 2, for each x, all strings xym,m ≥ 0, are in [x]φ, which
ends the proof. 2

We recall now an operation on words that will turn out to be very useful for
our investigation regarding the type of languages [x]φ. This operation, called shuffle
is a well-known operation in formal language theory and in parallel programming
theory. It is defined, for the strings x, y ∈ V ∗, as follows

Shuf(x, y) = {x1y1x2y2 . . . xpyp | x = x1 . . . xp, y = y1 . . . yp,
p ≥ 1, xi, yi ∈ V ∗, 1 ≤ i ≤ p}.

A shuffle of two strings is an arbitrary interleaving of the substrings of the original
strings For two languages L1, L2 ⊆ V ∗, we define

Shuf(L1, L2) =
⋃

x∈L1,y∈L2

Shuf(x, y).

Let φ = (α, β) be a valuating system of V ∗ and U be a subset of V . For each
x ∈ V ∗ we denote by

M([x]φ, U) = {y ∈ [x]φ|valφ((y)U) = valφ((x)U)}.

Obviously, if V̄ = {a ∈ V |α(a) = 0}, then

[x]φ = Shuf(M([x]φ, V − V̄), V̄ ∗). (3)

Theorem 2 Let φ = (α, β) be a valuating system of V ∗ and V̄ = {a ∈ V |α(a) = 0}.
1. If card(V − V̄) ≤ 1, then [x]φ is regular, for any x ∈ V ∗.
2. If card(V − V̄) = 2, then [x]φ is context-free, for any x ∈ V ∗. Furthermore,

one can decide when [x]φ is regular.
3. If card(V − V̄) = 3, then [x]φ is context sensitive, for any x ∈ V ∗. Further-

more, [x]φ is context-free iff it is regular and this can be algorithmically decided.

Proof. 1. Obviously, when card(V − V̄) = 0 there exists just one equivalence class
that is V ∗. If V − V̄ = {a}, then M([x]φ) is finite, consequently, by equation 3, the
language [x]φ is regular.

5

2. Let V − V̄ = {a, b}. If α(a) · α(b) > 0, then M([x]φ) is finite (Theorem 1),
hence [x]φ is regular. If α(a) · α(b) < 0, then

M([x]φ) = {z ∈ V ∗|lg((z)a) · α(a) + lg((z)b) · α(b) = valφ(x)}

which is a context-free language but not regular. As shuffling a context-free language
with a regular language one gets a context-free language, the second assertion is
completely proved.

3. By a similar reasoning to the previous one, we have

• There exist a, b ∈ V − V̄ such that α(a) · α(b) < 0; in conclusion, M([x]φ) is a
context sensitive language that is not context-free.

• For each pair a, b ∈ V − V̄ , α(a) · α(b) > 0 holds; consequently, M([x]φ) is
finite.

2

3.2 The linear polynomial

Let φ = (α, β) be a valuation system with β(n) = kn+p. By Lemma 1 and relation
1, one may write also

valφ(xy) = valφ(x) + valφ(y) + k · lg(x) · valφ0(y). (4)

Having the aforementioned relation, one may claim that Theorem 1 remains valid
for the linear case as well.

Theorem 3 Let φ = (α, β) be a valuating system of V ∗ over Z.
1. For each x, [x]φ is finite if and only if α(a) · α(b) > 0, for any a, b ∈ V .
2. Given a string x ∈ V ∗, one can decide the finiteness of [x]φ.

Proof. The proof foccuses only on the first assertion, the latter one obviously follows
from the first one. Assume that α(a) > 0, α(b) > 0, for any a, b ∈ V ; the case
α(a) < 0, α(b) < 0 may be treated analogously. Moreover, assume that β(n) =
kn + p, n ∈ N . We analyse what happens when k < 0; the reasoning may be
carried over the case k > 0 with minor changes. Clearly, there is n0 ∈ N such that
valφ(x) < 0, for all strings in V ∗ longer than n0. Let x be such a word. We claim
that valφ(y) < valφ(x), for all y ∈ V ∗ such that lg(y) ≥ lg(x) · |valφ(x)|. Due to the
length of y, one infers that

valφ(y) ≤ |valφ(x)| · valφ(y1y2 . . . ylg(x)).

But, |valφ(x)| · valφ(y1y2 . . . ylg(x)) < valφ(x) because valφ(y1y2 . . . ylg(x)) is negative
too. Consequently, [x]φ is finite for all x ∈ V ∗.

6

Let us consider that exist a, b ∈ V such that α(a) · α(b) < 0. As in the proof
of Theorem 1, the word y = a|α(b)|b|α(a)| satisfies valφ0(y) = 0. Denoting φ1(α, β1)
the valuating system with β1(n) = n, we claim that valφ1(zz

R) = 0, for every
z ∈ V ∗ with valφ0(z) = 0. Here zR denotes the mirror image of z. Indeed, if
z = z1z2 . . . zm, zi ∈ V ,

valφ1(zz
R) = (2m + 1)valφ0(z) = 0.

Note also that valφ0(zz
R) = 0, too.

Now, as
valφ(zz

R) = k · valφ1(zz
R) + p · valφ0(zz

R)

one gets valφ(zz
R) = 0. Due to the relation

valφ(xy) = valφ(x) + valφ(y) + k · lg(x) · valφ0(y)

one concludes that all strings x(zzR)q, q ≥ 0, with z as above, belong to [x]φ. 2

As far as the position of languages [x]φ in the Chomsky hierarchy is concerned, we
are not able to provide an exhaustive characterization like in the constant polynomial
case.

Theorem 4 Let φ = (α, β) be a valuating system of V ∗. The language [x]φ is
context-sensitive, for any x ∈ V ∗.

Proof. Let us suppose that β(n) = kn + p. For each x ∈ V ∗ with valφ(x) ≥ 0 one
construct a phrase-structure grammar Gx = (N, V, S, P) which works accordingly
with the next nondeterministic procedure:

1. For each string a1a2 . . . an ∈ V + the grammar generates the sentential form
Xa1a2 . . . anY Z, X, Y, Z ∈ N .

2. While the current sentential form contains letters in V and no trap symbol do

• If the suffix of the current sentential form is Y (−1)qZ, for some q ≥ 0,
then

– if no position in between X and Y is occupied by a letter a ∈ V with
α(a) ≥ 0, then block the derivation by a trap symbol;

– otherwise, choose a position i in between X and Y occupied by ai

with α(ai) ≥ 0 and

∗ transform ai into a new symbol bi, not in V ,

∗ write 1α(ai)(ki+p) before Z,

∗ remove each pair of consecutive symbols −1, 1, in between Y and
Z.

7

• If the suffix of the current sentential form is Y 1qZ, for some q ≥ 0, then

– if no position in between X and Y is occupied by a letter a ∈ V with
α(a) < 0, then

∗ if q > valφ(x), then block the derivation;

∗ else choose a position i between X and Y occupied by ai with
α(ai) ≥ 0 and

· transform ai into a new symbol bi, not in V ,

· write 1α(ai)(ki+p) before Z;

– otherwise, choose a position i between X and Y occupied by ai with
α(ai) < 0 and

∗ transform ai into a new symbol bi, not in V ,

∗ write (−1)α(ai)(ki+p) after Y ,

∗ remove each pair of consecutive symbols −1, 1, in between Y and
Z.

3. If the current sentential form does not contain any trap symbol, check whether
its suffix is Y 1valφ(x)Z. In the affirmative, remove all symbols 1 and X,Y, Z,
otherwise block the derivation by a trap symbol.

Clearly, Gx generates a string in V + if and only if its valuation with respect to φ
equals the valuation of x. Moreover, we should add the empty string to L(Gx) when
valφ(x) = 0.

Note that the working space [7] of each z ∈ L(Gx) is bounded as follows

WS(z, Gx) ≤ max(lg(z) + 4 + 2t(k · lg(z) + p), lg(z) + 4 + 2 · valφ(x)),

where t = max{|α(a)| : a ∈ V }. Finally, it is enough to notice that the proof may
be carried over the case when valφ(x) < 0, with the appropriate changes. 2

4 The exponential case

The subject of investigation in this section is the valuation systems class whose po-
sition attributing function is exponential. To this end, let φ = (α, β) be a valuating
system with β(n) = an, n ≥ 1, a ∈ Z\{0, 1}.

Clearly,
valφ(xy) = valφ(x) + alg(x)valφ(y). (5)

As we have seen in the previous sections, a crucial point in proofs was the
decidability of the problem concerning the existence of a string w ∈ V + such that
valφ(w) = 0. This problem is still decidable in our case.

8

Theorem 5 Let φ = (α, β) be a valuation system of V ∗, β(i) = ai, i ∈ N .
1. If a = −1, there always exist strings x ∈ V + such that valφ(x) = 0.
2. If a ∈ Z\{0,−1}, one can decide whether or not exists a string w ∈ V + such

that valφ(w) = 0 in O(np2), where n = card(V) and p = max{|α(x)| | x ∈ V }.
Proof. 1. If a = −1, then the valuation of each string a2p

i , 1 ≤ i ≤ n, p ≥ 1, equals
0.

2. Assume that V = {a1, a2, . . . , an} and β(n) = an, n ≥ 1. It is easy to
notice that exists a string w ∈ V + such that valφ(w) = 0 if and only if there exists
a polynomial P whose coefficients are in the set C = {α(x)|x ∈ V } such that
P (a) = 0. Suppose that w = x1x2 . . . xm, xi ∈ V, 1 ≤ i ≤ m. For

valφ(w) = a(α(x1) + aα(x2) + . . . am−1α(xm))

and a 6= 0, it follows that the required polynomial P is

P (X) = α(x1) + Xα(x2) + . . . Xm−1α(xm).

One can distinguish two cases: a = 1 and |a| ≥ 2.
If a = 1, we are dealing with a valuation system whose position attributing

function is constant; this situation has been treated in the proof of Theorem 1.
Assume now that |a| ≥ 2. Let p = max{|x| | x ∈ C}. The following algorithm

decides, for any given |a| ≥ 2, whether there is a polynomial with coefficients in C
that has the zero a.

Algorithm 1.
INPUT: φ = (α, β)
OUTPUT: YES, if the polynomial exists

NO, otherwise.

begin
C := {α(x)|x ∈ V };
D1 := {0}; D := ∅;
repeat

D := D ∪D1; R := ∅;
for each u ∈ D do

for each v ∈ C do
if u+v mod a=0 then R := R ∪ {u + v div a};

if 0 ∈ R then “YES”; halt;
else D1 := D1 ∪R;

until D = D1;
“NO”;
end.

In order to finish the proof, we need a reasoning for the correctness of the above
algorithm.

9

Termination. We claim that at each step when a number u + v div a, u ∈ D
and v ∈ C, is added to R, this number is between −p and p. Indeed, initially
the assertion is valid. Assume that at an arbitrary moment, when entering the
repeat...until loop, all elements of D are bounded by −p and p, respectively. For
|a| ≥ 2, every multiple of a of the form u + v, u ∈ D, v ∈ C, is in the interval
[−2p, 2p], hence u + v div a is in [−p, p]. Consequently, either 0 ∈ R, during the
loop or D = D1 after this loop has been performed at most 2p times.

Correctness. Assume that the algorithm provides 0 in R at some step. This
implies the existence of some k ≥ 1 such that

α(ai1) +
1

a
(α(ai2) +

1

a
(. . . +

1

a
(α(aik−1

) +
1

a
α(aik)) . . .)) = 0

or equivalently
α(ai1)a

k−1 + α(ai2)a
k−2 + . . . + α(aik) = 0.

It follows that valφ(aikaik−1
. . . ai1) = 0. Obviously, if the algorithm ends with

D = D1, then there is no string y such that valφ(y) = 0.
Finally, one may easily notice that the algorithm requires O(np2) time. 2

This result was used in the precedent cases for deciding the finiteness of [x],
provided that x is a given string in V ∗. However, we are not able to settle this
problem for the exponential case. The last theorem only allows us to point out:

Corollary 1 Let φ be a valuating system of V ∗ and x be a given string.
1. If a = −1, then [x]φ is always infinite.
2. If a = 1, then one can decide whether [x]φ is infinite.
3. [x]φ is infinite if the aforementioned algorithm provides a solution.

5 Final remarks

We briefly discuss here some considerations that seem to be in order.

• In the present paper one has considered a commutative semiring; it is natural
to study valuating systems over other (non-commutative) semirings.

• Our approach tries to valuate all strings over an alphabet. A more natural
idea is to valuate just those strings which belong to a given language. An
attractive class of languages could be the context-free one.

• All valuating systems presented in this paper may be viewed as deterministic
systems since each of their functions associates exactly one attribute to every
argument. It appears to be more natural to associate a finite set of attributes

10

to every argument. Thus, the valuation of a given word is actually a set of
attributes. Of course, the relation ∼φ, defined as

x ∼φ y iff valφ(x) ∩ valφ(y) 6= ∅

is not transitive anymore; however this relation might be called “synonymy”.

We hope to return extensively on these remarks in a forthcoming paper.

References

[1] J. Berstel and D. Perrin, Theory of Codes, Pure and Applied Mathematics,
Academic Press, 1985.

[2] J. Berstel and C. Reutenauer, Rational Series and Their Languages, EATCS
Monographs on Theoretical Computer Science, vol. 12, Springer, Berlin, 1988.

[3] H. Fernau, Valuation of languages, with applications to fractal geometry, Theo-
ret. Comput. Sci. 137 (1995) 177–217.

[4] G. Hansel and D. Perrin, Codes and Bernoulli partitions, Math. Systems Theory
16 (1983) 133–157.

[5] G. Hansel and D. Perrin, Rational probability measures, Theoret. Comput. Sci.
65 (1989) 171–188.

[6] W. Kuich and A. Salomaa, Semirings, Automata, Languages, EATCS Mono-
graphs on Theoretical Computer Science, vol. 5, Springer-Verlag, 1986.

[7] A. Salomaa, Formal Languages, Academic Press, 1973.

11

