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Abstract. This paper continues the investigation regarding the opera-
tion of substituting subwords of a given word with other strings, an operation
useful in cryptography. Some results concerning the closure properties of the
families in the Chomsky hierarchy are presented. A set of different neces-
sary conditions for the separable encryption systems are established. Possible
applications in the authentication signature are finally mentioned.

1 Preliminaries

To substitute some subwords of a word with other strings in the aim of hiding
the original message is one of the well-known techniques in cryptography. In [1]
and [2] the substitution operation as a generalization of the insertion and deletion
operations [7] has been introduced. A substitution can be viewed as a production
of the form x −→ y where the words x, y are given or are elements of some formerly
defined languages. To apply sequentially such a substitution to a given text w means
that one occurrence of x is replaced by y whilst in the parallel substitution all non-
overlapped occurrences of x are simultaneously replaced by y. Thus, different texts
are obtained, according to different decompositions of w with respect to x.

Some necessary conditions for the reversability of the sequential and parallel
substitutions have been established in [1] and [2], respectively, for some particular
words y. More recently [8], the reversability problem of the parallel substitution has
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been solved for all possible words y. In [4], the definition of separable encryption
systems and some basic properties have been presented.

In the sequel, the basic notions and notations necessary in the following sections
will be presented. For formal languages details we refer to [6]. An alphabet is
a finite nonempty set; if V = {a1, a2, . . . , an} is an alphabet, then any sequence
w = ai1ai2 . . . aik , 1 ≤ ij ≤ n, 1 ≤ j ≤ k, is called word (string) over V . The length
of the word w is denoted by |w| and equals k. The empty word is denoted by
e, |e| = 0. The set of all words over V is denoted by V ∗ and V + = V ∗ − {e}.

For a finite set A denote by card(A) the cardinality of A. For two words x, y we
denote by Nx(y) the number of occurrences of x in y, that is

Nx(y) = card({α|y = αxβ})

and extend this notation to
NA(y) =

∑

x∈A

Nx(y)

Note that we count all different occurrences of x, including the overlappings. For
w, x, y ∈ V ∗, the sequential substitution of x by y in w is defined as

w(x −→ y) = {uyv|w = uxv}

while the parallel substitution is defined as:

w(x =⇒ y) = {z|z = z0yz1y . . . yzn|n > 0}

such that

w = z0xz1x . . . xzn,

Nx(zi) = 0, 0 ≤ i ≤ n.

Moreover,

L(x −→ y) =
⋃

w∈L

w(x −→ y), L(x =⇒ y) =
⋃

w∈L

w(x =⇒ y)

The sequential substitution corespondes to the usual rewriting steps in rewriting
systems whereas the parallel one coresponds to the Indian type of parallel rewriting
[5].

In this paper we consider a generalization of the previous operations, namely by
considering more substitution rules instead of just one, used in parallel. Thus, an
encryption system may be viewed as a multi-agent system in which the encryption
rules cooperate in order to encrypt the plain text. Such a case is more closely related
to the practical way of encrypting messages by various cryptographical systems.
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2 Encryption rules and systems

Let V be an alphabet and P ∈ V ∗ × V ∗ be a finite nonempty set of rewriting rules

P = {xi −→ yi|1 ≤ i ≤ k}
For w ∈ V ∗, the encryption of w by means of P is the set

w(P ) = {z0yi1z1yi2 . . . zn−1yinzn| for some n ≥ 1}
where

(i) w = z0xi1z1xi2 . . . zn−1xinzn, 1 ≤ ij ≤ k, 1 ≤ j ≤ n,

(ii) N{xp|1≤p≤k}(zj) = 0, for any 0 ≤ j ≤ n

Note that for k = 1 one obtains the parallel substitution on words:

w(P ) = w(x1 =⇒ y1).

Conventions:

- P : encryption formal key (efk);
- x −→ y: encryption rule;
- (w, P ): encryption formal system (efs)
- w: the clear-text; the elements of w(P ) are called crypto-texts. (the

terms are very closed to the similar ones defined in [9].

An efk P is called efk with insertion if P contains at least a rule of the form e −→ y.
The efk P is called efk with deletion if P contains at least a rule of the form x −→ e.
From technical reasons we restrict our work to efk without insertion.

Examples:
(i). Any monoalphabetic encryption system (Caesar, afin) is an efk;
(ii). The usual substitutions in the formal languages theory are efk with |xi| = 1,

for all i.
Let w ∈ V ∗ and P be a efk. An encryption rule x −→ y ∈ P is called useless

on w if Nx(w) = 0. Obviously, for an efs (w,P ) it is preferable to choose a simple
efk, without useless rules (in [3] an algorithm to remove the useless rules can be
found). In the following we consider that all the encryption formal systems have only
useful rules. The encryption of w is deterministic if card(w(P )) = 1. All classical
encryption systems are deterministic (and this feature seems to be a weakness of
these systems).

The natural extension of the encryption of a word to a language, by means of a
given set of rules P , is defined as:

L(P ) =
⋃

w∈L

w(P )

We say that a family of languages L is closed under encryption if, for any finite set
of rewriting rules P and any language L ∈ L, we have L(P ) ∈ L.
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3 Encryption and the Chomsky hierarchy

A full trio is a class of languages closed under arbitrary and inverse homomorphisms
and intersection by regular sets.

Theorem 1 . Any full trio is closed under encryption.

Proof. Let L be a full trio and L ⊆ V ∗ be a language in L. For a given efk
P = {xi −→ yi|1 ≤ i ≤ n}, define the homomorphisms

h : (V ∪ {c1, c2, . . . , cn})∗ −→ V ∗, ci /∈ V, 1 ≤ i ≤ n,

h(a) = a, for any a ∈ V,

h(ci) = xi, 1 ≤ i ≤ n,

g : (V ∪ {c1, c2, . . . , cn})∗ −→ V ∗,

g(a) = a, for any a ∈ V,

g(ci) = yi, 1 ≤ i ≤ n.

Note that c1, c2, . . . , cn are n new symbols in spite of the fact that the strings
x1, x2, . . . , xn may not be distinct.

We state that

L(P ) = g(h−1(L) ∩ (((V ∗ − {xi|1 ≤ i ≤ n}){ci|1 ≤ i ≤ n})∗(V ∗ − {xi|1 ≤ i ≤ n})))

Indeed, the strings in h−1(L) are those strings of L in which some occurrences of
the subwords x1, x2, . . . , xn are replaced by the corresponding symbols c1, c2, . . . , cn.
The intersection with the above regular language ensures the substitution of all
occurrences of the strings x1, x2, . . . , xn.

From the closure properties of the family L it follows that L(P ) ∈ L. 2

Corollary 1 . The families of regular, context-free and recursively enumerable lan-
guages are closed under encryptions.

Clearly, any family closed under encryption is closed under homomorphism. Con-
sequently,

Corollary 2 . The family of context-sensitive languages is closed under encryptions
without deletion but it is not closed under arbitrary encryptions.
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4 Some properties of the separable systems

Let (w,P ) be an encryption formal system with w(P ) 6= ∅. The system is separable
([4]) if for any two different non-empty subsets P1, P2 of P , the sets w(P1) and w(P2)
are disjoint.

For example, for P = {b −→ a, ab −→ aa}, w = aab, we may take P1 = {b −→
a}, P2 = {ab −→ aa} which implies w(P1) = w(P2) = {aaa}, hence (w,P ) is not
separable.

In the sequel, we are going to provide a few simple and necessary conditions for
an encryption formal system to be separable.

Theorem 2 . Let (w, P ) be a separable efs.
1. If x −→ y, x −→ z ∈ P , then y = z.
2. If x −→ x ∈ P , then P = {x −→ x}.

Proof. Let w = x1xx2x . . . xxk be a decomposition of w such that Nx(xi) = 0,
i = 1, . . . , k. If P1 = {x −→ y}, P2 = {x −→ y, x −→ z}, then x1yx2y . . . yxk ∈
w(P1) ∩ w(P2), hence (w, P ) is not separable, contradiction. In order to prove the
second assertion, assume that x −→ x ∈ P and P 6= {x −→ x}. Take P1 ⊆
P − {x −→ x} and P2 = P1 ∪ {x −→ x}. Obviously, w(P1) ∩ w(P2) 6= ∅, hence our
supposition is false. 2

Theorem 3 . Let (w, P ) be a separable efs, x −→ y ∈ P and $ be a new symbol.
Then, for any z ∈ w(x =⇒ $), the encryption system (z, P−{x −→ y}) is separable.

Proof. Assume that exists z ∈ w(x =⇒ $) such that (z, P − {x −→ y}) is
not separable. Let z = u1$u2$ . . . $uk; therefore exists P1, P2 ⊆ P, P1 6= P2, with
z(P1) ∩ z(P2) non-empty (obviously, x −→ y belongs neither to P1 nor to P2). Let
v1$v2$ . . . $vk ∈ z(P1) ∩ z(P2) and take

P ′
1 = P1 ∪ {x −→ y},

P ′
2 = P2 ∪ {x −→ y}.

Clearly, P ′
1, P

′
2 are different subsets of P .

Because z ∈ w(x =⇒ $) it follows that w = u1xu2x . . . xuk. Therefore, v1yv2y . . . yvk ∈
w(P ′

1) ∩ w(P ′
2), contradiction. 2

Remark. The reciprocal statement of the second assertion does not hold. For
example, if w = abba, P = {a −→ b, b −→ a, ab −→ ba}, then (w, P ) is not separa-
ble, while ($ba, {a −→ b, b −→ a}), ($bb$, {b −→ a, ab −→ ba}) and (a$$a, {a −→
b, ab −→ ba}) are separable.

A natural question concerns an eventual link between the encryption and the
parallel/sequential substitution. For separable efs such a link exists being provided
by the following construction.
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Let (w, P ), P = {xi −→ yi|1 ≤ i ≤ n} be a separable efs. Take n new symbols
c1, c2, . . . , cn and consider the sequence

W0 = {w}

Wi+1 =
n⋃

k=1

Wi(xk −→ ck), i ≥ 0

Now, it is clear that

w(P ) = h(

max{Nxi (w)|1≤i≤n}⋃

i=0

Wi(x1 =⇒ c1)(x2 =⇒ y2) . . . (xn =⇒ yn))

where h is a homomorphism which replaces the symbols ci by yi and leaves un-
changed the other symbols. Of course, max{Nxi

(w)|1 ≤ i ≤ n} is the upper bound
for the number of the terms in the union above. Sometimes, w(P ) can be expressed
as a finite union of parallel substitutions only. For instance, if for any pair (xi, xj)
there are at most two overlapped occurrences of them, then

w(P ) =
⋃

σ∈Sn

w(xσ(1) =⇒ yσ(1))(xσ(2) =⇒ yσ(2)) . . . (xσ(n) =⇒ yσ(n))

where Sn is the set of all n-permutations.

Denote by Sub(w) the set of all non-empty subwords of a given word w and
Suby(w) = {x|w = uxv, Ny(x) = 1}.

Let us define λw : P −→ 2Sub(w), λw(x −→ y) = Subx(w).

Example: Take P = {ab −→ xy, bab −→ yx}, w = abbbab. Then:

λw(ab −→ xy) = {ab, abb, abbb, abbba, bbbab, bbab, bab}

λw(bab −→ yx) = {abbbab, bbbab, bbab, bab}
For w = ababab, we have

λw(ab −→ xy) = {ab, aba, bab}

λw(bab −→ yx) = {abab, bab, baba, ababa, babab}

Lemma 1 . Let (w, P ) be a separable efs, P = {xi −→ yi|1 ≤ i ≤ k}. Then, for
any decomposition w = z0xi1z1xi2z2 . . . xinzn such that N{x1,x2,...,xk}(zi) = 0, 0 ≤ i ≤
n, the relation

for any 1 ≤ m ≤ k exists 1 ≤ j ≤ n with xm = xij ,

holds.
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Proof. Assume that there is a string xi and a decomposition of w as above, such
that xi is not a term of that decomposition. We infer that w(P ) ∩ w(P − {xi −→
yi}) 6= ∅ which is a contradiction. 2

Theorem 4 . Let (w, P ) be a separable efs. For any x −→ y, x′ −→ y′ ∈
P, λw(x −→ y) ∩ λw(x′ −→ y′) is non-empty.

Proof. Due to the previous lemma, in any decomposition of w,

w = z0xi1z1xi2z2 . . . xinzn,

we can find at least one term equal to x and at least one term equal to x′. More
precisely, there are 1 ≤ j, k ≤ n such that xij = x and xik = x′.

Take the closest pair of the occurrences of x and x′, respectively, say xij and
xik . We can write w as either w = w1xijuxikw2 or w = w1xikuxijw2, therefore
λw(x −→ y) ∩ λw(x′ −→ y′) contains either xijuxik or xikuxij . 2

Theorem 5 . If (w, P ) is a separable efs, then λ is an one to one mapping.

Proof. Suppose that λw(x −→ y) = λw(x′ −→ y′). Because x ∈ λ(x −→ y) =
λ(x′ −→ y′), it follows that x′ is a subword of x. Analogously, x is a subword of x′.
In conclusion x = x′. From the Theorem 2 we deduce that y = y′. 2

5 Applications

The encryption formal system (L, P ) is partially separable if for any w ∈ L, the efs
(w, P ) is separable.

The system (L, P ) is strongly separable if the following conditions hold:
(i) (L, P ) is partially separable;
(ii) for any w1, w2 ∈ L, and any P1 6= P2 subsets of P , we have w1(P1)∩w2(P2) 6=

∅.
We are going to list below two possible applications of the separable efs. Of

course, other applications (in genetics, for instance) might be of interest, too.

A) Authentication.

Let us suppose that the data basis B uses the strongly separable system (L, P )
with P large enough (card(P ) ≥ 100). A subset P ′ of P is earmarked to every user
A of the data basis. In this way the set P ′ exactly identifies the user A.

Whenever A asks for access to the data basis, the authentication protocol follows
the next steps:

Step 1. A asks for access by announcing the public-key i(A);
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Step 2. B selects at random a string w ∈ L and sends it to A; at the same time
B determines the set of valid words w(P ′) associated to A.

Step 3. A answers with z ∈ w(P ′), choosed at random, too;
Step 4. B verifies whether z ∈ w(P ′); if z is a valid word, then B allows the

access of A to the data basis.

The protocol can be modified in order to use a neutral agent (a judge, say C),
in the following way:

Step 1. A sends its public-key i(A) to B ;
Step 2. B selects at random a string w ∈ L and sends it to A and C;
Step 3. A computes w(P ′), chooses at random a string z ∈ w(P ′) and sends it

to C;
Step 4. C computes the set P ′ such that z ∈ w(P ′) and sends it to B;
Step 5. B verifies whether P ′ is the earmarked set of i(A), and allows the access

of A to the data basis in the affirmative case.

B) Cryptography.

The encryption algorithm is based on the knapsack problem. Let (w, P ) be a
separable efs, with the rules of P arbitrarily ordered; card(P ) = n (suppose that n
is large enough).

The plain text x is divided into blocks of equal length: x = x1x2..xp, |xi| = r,
(excepting eventually the last block xp), 5r ≤ n < 5(r + 1).

One uses a binary codification ( for example A− 00001, ..., Z − 11010 ). To each
block xi a binary string of length 5r is associated. One constructs the subset P ′ ⊆ P
consisting of those rules which corespond to the digits 1 in the codification of x.

An arbitrary string z ∈ w(P ′) is emited.
The decryption means to identify the set P ′. A parser can be used in this aim.
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ed.), World Scientific in Computer Science vol 43 (1994), 1–12.

8



4. A.Atanasiu - Substitution on words and languages; separable cryptation sys-
tems. The 10th ROSYCS’96, Iasi, 30-31 mai 1996.

5. J. Dassow, Gh. Paun - Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

6. M. A. Harrison - Introduction to Formal Language Theory, Addison-Wesley,
Reading Mass., 1978.

7. L. Kari - On insertion and deletion in formal languages, PhD. Thesis, Univ.
of Turku, Finland, 1991;

8. S. La Tore, M. Napoli, D. Parente - Parallel word substitution, Fundamenta
Informaticae, 27, 1(1996), 27–36.

9. A. Salomaa - Public-key Cryptography, Springer-Verlag Heidelberg 1990;

10. J.-C. Spehner - La reconnaisance des facteurs d’un mot dans un texte, Theo-
retical Computer Science 48 (1986), 35–52.

9


