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Chapter 1

Introduction

Because of the recent expansion of our technology towards the nanoseale, we are
currently witnessing a growing demand of accurate simulation and prediction methods
for advanced materials and micro or nano structures, or for what is known as the field
of quantum chemistryv, The quantum-mechanical approach that s needed to acenrately
describe multi-particle systems is out of reach for an analvtical treatment (except for
a very limited number of special cases) and we must make intensive use of numerical
methods in order to reach our goal. The main limiting factor of the current numerical
methods is the access to finite computational resources and, although the growth rate of
computer performance available is rapidly rising, we still need to improve the theoretical
model and the numerical methods that are being used in order to gain an insight in the
bhehavior of structures that are comprised of more than just a couple of atoms. There
are numerous examples of theoretical quantum-chemistry models being used in simula-
tions, but they can all be divided between the ab initio or semi-empirical classes (the
first making use only of fundamental phyvsical constants and the latter allowing for the
introduction of certain experimental results). The following material refers exclusively to
ab inatio computational methods, Some of the most popular general wb initio approaches
ave: Hartree-Fock (HF) and post Hartree-Fock (pHEF) methods, quantum Monte Carlo
(qMC) and the Density Functional (DFT - Density Functional Theory). Hartree-Foek
and post Hartree-Fock are both approximate selfcconsistent variational methods used to
determine the ground state wave-function and the ground-state energy of quantum many-
body systems, the main difference between the two being the fact that the latter uses a
linear combination of Slater determinants in order to represent the wave-function, in con-
trast to the single determinant used in the case of Hartree-Fock, which means that it also
takes into account the electron correlation and leads to better accuracy. Quantum Monte
Carlo methods imply a sort of variational "guessing’ problem and are considered the most
accurate methods available for medinme-sized systems (around some tens of electrons}. All
of the thee methods metioned above unfortunately fail to scale linearly with the size of
the system, i.e. the number of electrons { ¥): HF and pHF methods usually scale as N?
and MC as N2 [1].

Methods belonging to the last class, DFT, however, can scale linearly with the sys-
tem size, and one such example is that of the software package used and described here:
SIESTA (Spanish Initiative for Electronic Simlations with Thousands of Atoms), which
can be used to model realistic sized systems, from nanostrnctures to bulk materials,

bo
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1.1 Motivation

Although there are numerous tvpes of interesting and important nano-metric struc-
tures that could have been studied by the use of DFT method. this thesis is particularly
directed towards the investigation of the general electronic properties of wiirtzite semicon-
ductor nano-tubes and nano-wires. The reason for this choice is the fact that these types
of structures are eurrently being used in prototvpe and consumer-grade electronic devices
(like solar cells electrodes, magnetic and electric nano-sensors and nano-transistors) and
even more purposes have been envisioned for them in the near future. It is also worth
mentioning that certain features that are specific to the numerical approach that lies be-
hind the STESTA package make it most suitable for structures as the ones presented here
(spatially isolated non-interacting nanowires and nanotubes) because the empty space
that must be placed between them as a consequence of the Born-von Karman boundary
conditions is almost “free’ from the computational standpoint,

The aim of this work is to tnvestigate the changes that take place in the electronie
and phononic properties of the material when switching from bulk boron nitride (BN)
to quast onc-dimensional wiirtzite structures, Although BN might not seem a suitable
matertal for electronic applications because of its high band-gap (4.5-5.5 V), the pres-
ence of surfaces is expected to lower the gap energy. This study tackles a number of
different sized nanowires and nanotubes and attempts to capture some of the effect of
varving the external and internal radii, without attempting to be an exhaustive study
of such properties. An investigation has also been carried out in order to find a better
suited way of treating the surface of such stroctures. It must be said that the -1D strue-
tures mentioned above were of a wiirtzite structure, and in order to carry out a better
characterization, they have been compared to the much different but well know rolled
grapheen-sheet BN nano-tubes. Another point of interest was that of phonon dispersion
in nano-tubes and nano-wires and investigations in this direction were carried out for a
few structures of wiirtzite and graphene structures in order to detect deviations {from the
known bulk behavior.



Chapter 2

Density Functional Theory

The Density Functional Theory is the governing principle bhehind SIESTA, and i€
refers primarily to the description of atoms, moleeules and solids In their gronnd states
based on the electronic density distribution »{r). Tt was developed by Kohn and Shawm 4]
based on the exact ground state theory of Hohenberg and Kohn [5].

sSome of the advantages of DFT over other methods worth mentioning are:

1. the higher degree of intuitiveness behind the 3-dimensional electron density when
compared to the 3N -dimensional wave-function,

2. a higher degree of computational simplicity

3. it's ability to handle infinite periodic systems and large (hundreds to thousands of
atoms) non-periodic systems.

2.1 Hohenberg-Kohn theorems

The foundation of DFT is based on two theorems first proven by Hohenberg and
Kohn:

. For any system of interacting particles in an external potential ©{r), the potential v(r)
is determined uniquely, except for a constant, by the ground state electron density n{r).
II. A universal functional for the energy E{(n{r})) can be defined. valid for any external
potential v{r). For any particular v{r), the exact ground state energy of the svstem is
the global mintmum vatue of this functional, and the density n(r) that minimizes the
functional is the exact ground state density. [3] 5]

Also Kohn and Sham proposed an anseiz that hasically rests on the assumption that the
oxact ground state density can be represented by the ground state density of an auxiliary
svstem of non interacting particles,  Although this statement s not at all obvious, the
ansatz is now a rigorously established theory,

The first hurdle to pass would be proving the uniqueness of the groundstate electron
density n{r) for an interacting N-electron svstem in an external potential ¢(r) (for exam-
ple, the ionic potential). The proof is as follows:

-consider an external potential «(r) with the associated ground state density n(r), the
total number of particle N [ n{r)dr, Hamiltonian I7 and ground state and energy ¢
and It :

v Nonir),¢, I (2.1)
-also, consider a second system:
o HUON DR () (2.2)
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where v’ / ¢ + C and hence ¢ / .
By the Rayleigh Ritz variational principle :
1" (2.3)

12— A{olle)y < {df

and

(|11

oy

ey + /(t-‘(r) — ' () (r)dr (2.4)

OF

K< B /(z(r) — ' () (r)dr (2.5)

Sinee #'(r) = n(r) is excluded because (2.5} would result in 0 < 0, it can be stated
that any potential «/(r) except ¢{r) | ¢ leads to n’(r) Z n(r}. This means that all prop-
erties derivable from H, such as the many electron ground state wave funcéion and the
energy can be derived from n(r).

The second theorem is as easily proven:

-consider a system with the ground state electron density n,(r) that corresponds to the
external potential v (r), and for these corresponds the expectation value of the Hamilto-
nian in the gronnd state

= Bl (r)] = {in| 1[4 (2.6)
-considering a different density np{r) that necessarily corresponds to a different wavefune-
tion ¢y, it fallows that the energy [2; of this state is greater than f4)

l'.-“J_ — (’ll,’i’l“]l|‘f',{?1) < (f‘z‘ fl]_|’(;’f.’2> — 1'4-‘2 (27)

2.2 Kohn-Sham equations

Sinee it has been shown that all we need to know is groundstate electron density, the
Kohn-Sham equation can now be introduced. The Kohn-Sham cquation is nothing else
than a Schridinger-like equation of a system of non-interacting particles that genorates
the same clectron density as the system of interacting particles. The way Kohn and Sham
managed this is by defining a fictitions external potential in which the non-interacting
particles move that incorporates all the many-body effects:

B _ . . :
(}VZ | 'z’KS('r')) i (r) — Iy (r) (2.8)

2m
The energy can be explicitly written as:

D [‘w(?)] 2: + LTI‘H‘A + Lr-r'.',(: + [7’(( + E:r!(: (29)
Where:

o [/, 15 the encrgy that corresponds to the nuclens-nucleus electrostatic interaction
1 2 ZQ'ZJ_"J

{ ;Hn Ch
SN ]
2 (}‘-/:{'3 I{Gﬁ

(2.10)
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o [/, is the total eleciron potential energy due to the nuclei

U — / Vo, () dPr (2.11)
and V), represents the potential energyv of one electron in the electrostatic field of all
the nuclei )

o= 2 2 91
() — =5 I (2.12)
‘ r = H(}|

e [/, represents the Hartree energy, the energy that describes the electrostatic inter-

action between all the electrons, considered to be stationary

. [ : .
U =+ / VH (T (2.13)
N U 1 e AN \ - wir e el e . fpor T ; ; . .
where VP(77) is the energy of one electron at 7 in the field of all the other electrons
i (ﬁ_fb) i'f !
) 5 [ nlrh)d’r .
V(T — 2 —|? — (2.14)

o VA7) is connected to the charge density n{7) via Poisson’s equation
VAV — Azein(7) (2.15)
o the electron density can be expressed as sum over the wavelunctions

(@ =S gilis(PI (2.16)
where ;18 the occupaney of the state

e the wavefunctions v;(7) are orthonormal solutions to the Kohn-Sham equation and
are known as the Kohn-Sham orbitals

ot =N (T 3, SN ¢ —_
/'z;.)_i*( P () dr — 6y (2.17)
e we can now express 7., that represents the kinetie cnergy, as
2
ey (e ) 5
T. E g | (7)) )—‘7 (7)) dy (2.18)
—~ . 2m
o the last term that appears in the energy functional is the exchange-correlation energy

L,. / freln(T)r (2.19)



CHAPTER 2. DENSITY FUNCTIONAL THEORY

=

2.3 Exchange-correlation energy

The exchange correlation energy is the only one of the atorementioned terms that
is not exactly known and must be approximated, to a certain extent. bv relving on the
partial and interpolated results obtained for simpler systems and by taking into con-
sideration either the local value of the electron density (LDA - Local Density Approx-
imation) or by using a more rigorous expression that takes into consideration even the
variation of the density (GGA - Generalized Gradient Approximation). Although the
exchange-correlation energy might tend to get passed over at first glance because of it's
reduced weight when compared to the others, it is found to be of great importance in
determining the correct properties of some materials, especially the ones known to be
strongly correlated, meaning that the multiparticle effects play an important part. If this
exchange-correlation term would be exactly known, the results of DFT could be com-
pletely accurate, but sinee it is strictly an effect due to the multi-particle nature of the
material, it’s nvestigation is by no means a simple task. [7]. Because of the importance
of the exchange-correlation cnergy it is worth mentioning a few other details about it.

e /i, can besplit up in two separate items, the exchange energy 14, and the coreelation
cnergy fu,
Pope — 1o 1 v, (2.20)

o the exchange energyv s a divect effect of the Paull exclusion prineiple that applies
to overlapping wavefunetions of indistinguishable particles, and has the expression

- | - Lo (?)L’i?(?!)'}k(?’ )'1/{-"':)'(?) o
fop — —5 ZJ:/ dy / dr T (2.21)

o the correlation energy describes the tendency of electrons to avoid cach othier hecause
of their Coulomb repulsion; since it depends on hoth statie and dynamic effects, it is
harder to caleulate. The effect of exchange and correlation ean be seen as a bubble
or a hole that surrounds electrons that reduces the chance of other electrons being
found at the same posteion [6].

2.4 DFT self-consistent algorithm

We will use the notions above to obtain the Kohn-Sham equations by using the varia-
tional principle. By using Lagrange multipliers and taking into aceonnt the orthonormality
conditions for the wavefunctions ¢ we end up with the next functional derivative:

(5 T T T r - ._ IR N e AU e AN 51 Y
W Tp + Ln;n. + I—-“‘)?,F: + [J,—;p + E_;»p — ; /\j, ./ i ( r )E/.-‘f,( T )(I’ r 0 (222)

Knowing that the functional derivative is nothing but:
gl
& f(x)

8 [ (x)dx

—
2]
3]
W

e

U] Fl@ o) [
it s straightforward that:

4T, h? 5 .
LU VAN 294
St (7) ‘(I'Z'."re;v (7] ( )
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U, R -
(MTJT JI" l?(dnr' )*(;‘_J?;('r') (2'2{))
§Fe o

sy v (T ))es(7) (2.26)
{";?1‘!1 . .

=T (_) Z‘QH

o (7) (2.27)

and

. “2N [ ) = =aitr) (2:28)

and, knowing that 6(/,, — ] SVITnd*r 1 VT and*r and by using Poissow’s cquation, after
integrating by parts twice, we end up with:
("IF’F:
daht { 7")
At last, we find that the Kohn-Sham orbitals must be solutions to the following set of
equations:

— gV (2.29)

h? - Ai

AR v (AT V()T =) (2.30)
20 v

where V(7)) — V(7)) + V() | f1.(n(7) is the Kohn-Sham potential. In order to use

the Kohn-Sham equations numerically for a certain svstem, thev must be included in a

self consistency loop. A possible schematic representation would be the following:

Guess value for the charge
density n(r)

-

A A/ Evaluate the electron
Solve Poissan's equation Evaluate the Potential energy Vn
_ exchange-correlation -

term
T ¥ a7
Campute the Kohn-Sham
potential v
Y

‘ Solve the Kohn-Sham equation

h J
‘ Elvaluate and output the new density ‘

Compare the output with the input density
- Nout=nin ? .

yes o no

Figure 2.1: DET seli-consistent scheme
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After obtaining the full set of solutions. the system’s wavefunciion, which must
be anti-symmetric, can be written as a Slater determinant:

. e (r) . n{ra)
III(T|,T21TN] - —'I (231)
T len(r) o Uwlrw)
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Pseudopotentials

3.1 Norm-preserving pseudopotentials

Pseudopotentials are objects that approximate, to an arbitrary degree, a more com-
plex system, for example, they are used here to replace the potential of the core electrons
(all electrons that lie on oceupied clectron shells) and nnclear potential of atoms with a
less ecomplicated potential, This method was first introduced by Hans Hellmann in the
19305 [10]. The pscudopotential has the effect of froning out” the fast varving nodes of the
wavefunction by freezing” the core electrons and explicitly dealing only with the chemi-
cally active valence electrons i.e. the electrons responsible for the actual chemical bonds.
The most important parameter that determines the degree to which the core electrons are
approximated is the cutoff radius r. that determines the actual physical length to which
the pseudo-wavefunction 0™ (7) is kept identical to real, all electron, wavefunction ¢ (7))
(wavefunction computed from the all-electron simulation} and is usually positioned about
the outermost maximum of the wavefunetion . The cutoff radius can be different for
different I numbers. This kind of pseudopoptentials are called norm-preserving because:

e [
/ ‘(/‘."([,F!* ( ?)‘(”;}(m ( }—!') ‘ ]f o / ’({a’f.’ Fa Xt ( ?)'[‘f.l NS ( ?) ¢ jr ( 3 1 )

Jo Ju
The ones with a larger cutting radius r. are called soffer (hecanse their pseado-wavelunction
is smoother) and are also less fransferable, that is, they capture less of the properties of
the actual atom and lead to better or, i this case, worse predietions for the encrgy levels

and wavefunetions depending on the surrounding environment they are placed tn, Trans-

ferability can be shown to be related to the existence of a region around the nunclens where

the charge density is independent of the chemical environment |12].

3.2 Obtaining the pseudopotentials

The pseudopotentials are obtained in the following way:

PR e

o the radial parts of the all electron wave-functions ¢ (7} and energies K are
obtained from a DFT calculation by solving the radial Kohn-Sham equation (for
the non-relativistic case):

Qnedr? 2 2

RE R R+ i » o .
( L 4 (’)> 7 (r) — 17 () (3.2)

10
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e the pseudo-wave-functions ¢4 are generated and the radial Kohn-Sham equation is
inverted in order to obtain the screened pseudopotential V7

Fpsu

e the unscreened pseudo-potential V777 (r) is obtained by removing the effect of the
valence electrons

V}bs“('f') _ Vi‘ps(r) _ \’/}]’(HP‘S(T')) _ V:M(?_lps(,r,)) (3%)
where pP* is the atomic valence charge density 13].

It can be seen that the form of the psendopotentials obtained is not local {does not
depend only on the distance r) but is semilocal, depending on the distance and the an-
gular coordinates (basically, on the quantum number ). The general requirements that
must be take into consideration when constructing pseudopotentials ave [14];

e the psendo-wavefunction must be smooth (contain no nodes)

e the normalized radial psendo-wave-function must be equal to the normalized radial
all-clectron wave-function bevond the chosen cutofl radias

o the charge enclosed within the sphere of radiug 7. must be equal for the two wave-
functions

e and the valence all-electron and pseudopotential eigenvalues must be equal

Although the DFT method does not require or imply the use of pseudopotentials, it
i obvious that by reducing the number of clectrons that are taken into account and thus
by reducing the number of basis sets needed for the actual caleulation we can achieve a
better scaling with time.

The SIESTA package includes a program, cotitled Atom, dedicated to obtaining the
pseudopotentials that correspond to an atom of theoretically any ehemical species (even
artifictal atoms) and of any energy (even pseudopotentials for excited states are obtain-
able), with the specific approach used here being that of Troullier and Martins [11] (used
to obtain the pseudo-wavefunction} coupled with LDA approximation and the Ceperlev-
Alder Hlavor’ for the expression of the interpolated exchange-correlation energy |9}

3.3 Kleinman-Bylander projectors

A farther step is taken in order to optimize the computational side of the problem:
instead of using the semi-local form obtained above, a non-local form proposed by Klein-
man and Bylander is preferred [15]. By using a non-local form it is possible to split the
pseudopotential in a purely long -range local part V,..i(r) that depends only on the po-
sition and is the same for all quantum numbers, and a short range, angular momentum
dependent, non-local part VED | First of all, a set of orthogonal wavefunctions must be
obtained for the non-local pseudopotential, based on the solutions to the radial Kohn-
Sham equation for the sercened semilocal pseudopotential

(_-1 Il

2dE o v;""‘(r)) Yunlr) - Bintfunlr) (3.9
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by using an orthogonalization scheme proposed by Bléchl [16]:

ri—1 R
; <'+’;.’n’ |(ﬂ’.’(r) q’).’n>
L T Tin\T) — AT 7 3.5
i ( ) i ( ) Z ¥l ( )(;{ra|()"{(f’)|~,:‘{n’> ( )

/=1
where 6Vi(r)  V(r) — Vipw (7). The local pseudopotential Vi, {r) is arbitrary as long
as it joins the semilocal pseudopotential Ir’;”‘“ bevond the core radius r... . which is the
highest valued cutting radius amongst all I r, and , in the case of the SIESTA method,
it is chosen to be as smooth (fransferable} as possible; as a consequence of Gauss’ law.
both the local and semilocal pseudopotential become equal to the all-electron potential
bevond r.. It can be seen that the non-local part goes to zero for r > r..

The Kleinman-Bylander (K33} projection functions are:

KBy, SV pYom, (Y (4 260
"Umxn,(r) - d"((!)u,p-,(.,L(I’)}(,,,(I) ('3())
with Yy, being a spherieal harmonic fanetion and 7 is the versor 7 — -,

The actual projector is:

KB NS

CHbCE

VIR D0 D i) GuldVitr)lein) { il (3.7)

L 0m —n=1
which leads to the non-local KB pseudopotential:

VI V() + VEE (3.8)

One disadvantage of using the Kleinman-Bylander pseudopotential form is the pos-
sibility of producing the so called "ghost states” which have energies close to or below the
valence states, and even lower than the first, nodeless, wavefunction: care must be taken
to avold such nnwanted states {17}



Chapter 4
SIESTA

4.1 Basis set

The suceess of the SIESTA method comes from being able to tackle svstems with
a large number particles, and, implicitly, with a large number (hundreds) of atoms, The
way this 15 made possible is by relving on the sparsity of the Hamiltonian and overlap
matrices which s achieved by using a set of strictly localized basis orbitals:

o — <(,fau,|fk|¢b> _ [ G (VAT — 0 (4.1)
Sm’) - <(‘f)”_ (,j)b> — / Q:(?)d)b(?)d? — 10 (12)

This translates into neglecting the interactions with particles that are far away (more than
a couple of lattice constants) which is an acceptable assumption. This numerical LCAO
basis set is made out of orbitals that have the form of numerical radial function times
a spherical harmonic @y, (7)) Gun(r)Ym () (with: r; 7 — Iy, I7; being the position
of atom i; v |7]; 7 %) and are obtained by solving the Kohn-Sham equations for
an atom inside a confining potential. An important step here is the choice of the ac-
tual confinement potential because i it 18 too hard (varies too abruptly) the orbitals and
their derivatives become discontinuous and if i is too soft the basis would have a large
spatial extent. The way this problem is dealt with is by choosing a confinement potential

B by
Vi -1 13)
- 13

where the parameters iy, 2. and Vi) can be independently adjusted. There are also ways
to cenlarge the basis, when it is needed, hy generating more than one orbital per angular
momentum or even generate a polarized orbital in order to better describe orbital hy-
bridization [18]. Tt should be mentioned that there are no restrictions on the choice of
basis set from the method itself, i.e. the vser can chose any radial dependent functions
whatsoever to serve as basis sets. It must be said that the numerical LCAQO basis rep-
resents only the real-space part of the Bloch wavefunctions that are used, and that the
real-space and k-space integrals are treated separately. {18
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4.2 One-electron Hamiltonian

By using the KB approach, the Kohn-Sham one-electron Hamiltonian can be written

as
H _ f[Y | § L/":Uou[ (’r) | § ljf&ﬁ }l l’/'ff (T) | 1-”'&.(-‘(«';") (in)

i i
where | — —%'\?2 is the kinetic energy operator, ¢ is the atomic index, VY {r} and V™" are

the total Hartree and exchange-correlation potentials and V*Ur) and VE7 are the local
and KB potentials for atom 4. In order to counteract the effect of the spatially extended
positive local potential V™ a negative screening potential is used. The seeming poten-
tial V™ is generated by an atomic density n®™™ constructed by populating the basis
functions with valence atomic charges. Since the basis functions are zero bevond the cutoff
radius R, — rnax(R'), the screened nentral-atom (NA) potential VA — jlomal | jratom gy
also zero bevond R.. We define dn{r) as being the difference between the electron density
n(r) that is obtained after a self-consistency loop and the sum of the atomic densities
petore goorelulons paone and §VU (1) is the Hartree energy generated by dn(r). which
integrates to zero over the entire unit cell and is also much smaller than p(r). The Hamil-
tonian can now be rewritten as:

=11 VEY)y 1 avT () 1 v (4.5)
hecause
- g - > g _b,.‘u..',r)m ol . . 5 il o . L N
’lfH('r')—/d'r’_f,}(r_), —/(ir"”_, (_i | /d'r"_f:“_), = V) sV
Fow ST T
(4.6)

The matrix elements of the first two terms of the Hamiltonian are computed as in-
tegrals in A-space because they represent convolutions that under the Fourier transforim
turn into a simple product, The matrix elements of the last three terms are evaluated in
diserete points on a real space grid of controllable fineness, Also, the Poisson equation
is solved by the method of fast-Fourier-transform taking into aceount the periodically re-
peated supercell, Although the deseription of the algorithm was oversimplified for brevity,
more details can be found in [18]. The next step consists of solving the general eigenvalue
problemn:

o ~ t hl ard

(Hasn) (Onsa) = Ep (Saen) (Cvsr) (4.7)

where (Cyn are the cocflicients of the wavefunction expressed in terms of the localized
orbitals,

4.3 Brillouin zone sampling

In order for SIESTA to be able to work successfully for both large unit cells {where
a computation in the T' point can be a sufficiently good approximation) and for smaller
unit cells (of a few unit cell lengths in on one or more directions), an auxiliary supercell is
defined that is large enough to contain all the atoms from the surrounding cells and from
the unit eoll itself whose wavefunctions overlap, in any of the real-space grid’s points, with
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the wavefunctions of the atoms from the unit cell.

The Hamiltonian matrix elements are calculated by summing the integrals for the
non-local pseudopotential with the local pseudopotential real-space grid integrals (com-
puted only within the unit cell) between the orbitals in the supercell. The overlap values
between the basis orbitals that ave computed tn every point of the real space grid are than
sutmed up in the corresponding matrix elements. The k-space is treated in similar fash-
ion to the veal space, in that the integrals are computed by summing the values from a set
of points on a mesh., The E-space mesh can he ehiosen either as a sphericallv-syminetric
radial grid or a rectangular grid as the one proposed by Monkhorst and Pack |20}, taking
into account time reversal symmetry by using only halt of the Brillouin zone but without
making use of the svmmetry of the cell.

After the real space overlap and Hamiltonian matrix elements are computed they
are multiplied at every k-point by the corresponding phase factors and then summed up
by folding the supercell orbitals to their unit-cell counterparts. The resuliing N x N
complex eigenvalue problem in solved for each £ point, finding the Bloch-state expansion
coefficients c;;{k):

gilkor) e (r)ey (k) (4.8)

b
Thus, the electron density becomes
-,r'g_(-‘,r') - / ga(k) "f,j"i(kr r)‘zdk - P ”,(,D:Z(T')ff),, (,r) (19)

with the density matrix

Py Z ./Bz (?Iri(k).qi('li-")cipﬁikl‘lup7”"’0’;;1? (4.10)

In the case of 1-D structures, a parallelipipedic supercell is considered, which con-
tains a transverse slice of the nanowires and nanotubes to be investigated. Therefore, the
only relevant direction in the Brillouin zone is the I'-A direction, which corresponds to
the longitudinal orientation of the structure.
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Figure 4L.1: Brillouin zone for the hexagonal lactice showing the high svmmetry points
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4.4 Atomic forces and structure relaxation

Becanse the atomic coordinates used in the input data do not usually correspond to
the real structure, a molecular dynamics self consistent cvele is used for the relaxation
of the lattice. SIESTA uses a classical Born-Oppenheimer molecular dyvnamics method
that computes the forces for each ion while ignoring the electronic degrees of freedom, as
opposed to the more precise but more computationally expensive Car-Parinello method.

The approximation proposed by Born and Oppenheimer {22] is important because
it allows the treatment of systems with quite a large number of atoms (which would be
nearly impossible if the nuclear degrees of freedom would be considered}. This is done
by splitting the wavefunction into an electronic and a separate nuclear component that
incorporates the vibrations and rotations of the lattice. Such an approximation is possi-
ble only because electrons and ions/nuclei evolve on very different time scales, which is
mainty due to the high ratio between nuclear and clectron masses, e the motion of the
nuclei 1s perecived by the clectrons only as a small perturbation. In essenee, electrons
only "feel" the elamped (frozen) ionic configuration while the nuclei/ions only "feel” the
averaged clectron field (1|23 - page 93}

The force that acts on cach ton, in the case of a clamped on Hamiltonian {the nuelad
and their adjacent core electrons have a fixed position}, is computed by making use of the
Hellmann-Feynman theorem |21 that states that the force that acts on ion ¢ along the
direction j is

OIS
I'p,, ——— 4.11
ST (1)
which is none other than
GIPLS ' all .
o [ty Ut (112)

where 7.7 represent other parameters that the wavefunction depends on and dv repre-
sents the entire domain of the wavefunction. This is true only for a svstem that lies in
a steady state becanse for a system in a non-steady state the concept of force does not
have a clear definition.

A conjugate-gradient method is used to solve the resulting svstem of equations. After
computing the forces for all the atoms and displacing the ions accordingly, a self-consistent
cvele is used to obtain the energies and wavefunctions, and subsequently, the forces for
the new configuration. Relaxation steps are carried out until a prespecified maximum
force tolerance is reached for all of the ions. SIESTA allows users to select between a
relaxation that keeps the unit cell fixed and a more precise type of relaxation that also
changes the unit cell and, implicitly, the k-space associated to the erystal/struecture,

4.5 Phonons

in order to obtain the phonon spectrum for a structure or material, STESTA musé
first compute the forec-constants matrix., This can be done by a finite difference method
that basically consists tn moving each atom, by a controllable distance, on all three axes,
one by one, both in the positive and negative directions, and running a self consistent
loop at cach displacement in order to compute the aceurate shift in encrgy, and mnplicitly,
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the force that acts between any two atoms,

After this step, a program entitled Vibra, also part of in the STESTA package, is used
to generate and diagonalize the dynamic matrix in order to obtain the phonon frequency
dispersion, in ean™! for each & point. The dvnamic matrix is nothing clse than the set of
equations of motion written in a particular matrix form whose cigenvalues represent the
squares of the normal frequeney modes and the eigenveetors are the amplitndes of each
normal mode,

4.6 Surfaces

Because the systems considered in this work have a large part of their atoms exposed
on the surface that separates the material from the surronnding vacuum, their properties
become significantly different form their bulk counterpart. The presence of the surface
breaks the translational invariance found in the normal bulk material and gives rise to
a supplementary confinement potential similar to a (cvlindrical) potential well. Another
difference represents the rearrangement of atoms on the surface, when compared to the
expected bulk positions.

What is generally expected from such structures is the emergence of new tvpe of
states, caused exclusively by the changes induced by the surface, which are called surface
states, with energies that can lie either in the bandgap or in valence band or conduction
band of the normal bulk material [26]. This change brings into the spotlight interesting
properties of materials that would have been otherwise ignored [24] [25].

An interesting piece of information is the physical localization of such states because
in the case of -1 D structures the wavefunction may cither: lie in its "bulk"™ (confined
inside the structure and not extending to and bevond its surface); or they can be localized
on the sarface (the first fow layers of the surface and even into the near space around the
structure), in this case theyv are known as surface states; or they can be mixed surface and
"hutk" states, Surface states are usually caused by spatially extended orbitals like sp® or
o that stick out of the surface while experiencing significant shifts from the bulk values.

In this work, an approach proposed by Garcia-Gil et al. [27] is used to extend the
otherwise localized basis into the surrounding vacuum. This is accomplished by placing a
set of "Hoating orbitals" or "ghost orbitals” (ealled this way because they are not occupied
by extra electrons and do not have an attached ion) in the near vicinity of the surface
atoms. Gareia-Gil et al. who have treated the case of infinite 2D slabs and have placed
the "ghost orbitals” in positions that would have corresponded to normal bulk-latiice
atoms, because the relaxation of the lattice was negligible; in the case of ¢-1D structures,
the lattice relaxation is far greater and placing "ghost orbitals” in the same way would
be inadvisable. By using the Hellmann-Fevaman method for lattice relaxation, forces can
only be computed for ions and not for electrons, and the "ghost orbitals™ wonld rewain
still during the lattice relaxation and would not follow the lattice atoms. In order to over-
come this problem in an systematic way (not by placing the "ghost orbitals" by hand,
in an arbitrary fashion} a small program was used to read the positions of the atoms
from the previously refaxed nanowires/nanotubes and to place a "ghost" along the radius
determined by the center of the wire/tube and each of the atoms of the surface (for hoth
the inside and outside surfaces in the case of tubes). In this manner, a sufficiently uniform
"ghost orbital” envelope was generated.
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Results

5.1 The system and computational setup

The first step consisted of obtaining a set of usable pseudopotentials for both boron
and nitrogen. The next step that was undertaken consisted of editing the atomie positions
of the supereells that correspond to the different struetures, In the cases presented here,
the purpose was to obtain the properties of isolated nanotubes and nanowires and because
of the Born-von Karman periodicity conditions that this method nses, special eonditions
were required: a large supercell was chosen (a square with a 20 lattice constants long (5.1
nm} side for all the structures exeept the 5 nm diameter tube for which a 30 lattice con-
stants long side was nsed (7.65 nm)) in order to minimize the lateral interactions between
the structures.

) O O ¢

) O O (

Figure 5.1: Horizontal {xOy) section through a set of adjacent supercells

On the vertical 001} direction, the cylindrical supercell directly joins the adjacent cells
and the interactions with these neighboring cells is taken into account.

18
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Figure 5.2: Vertical stacking of supercells

Because of the large number of atoms involved, the positions of the atoms in a
supercell were determined with the help of a custom editing program that caleulated the
positions corresponding to a the atoms from a eylindrical section of bulk wiirtzite BN, In
the case of the graphene-like tubes, the atomic positions correspond to the atoms from a
rolled-up hexagonal single-lavered sheet of two different chiralities (zig-zag and armchair}.

Because the atomic positions used were only geometrical estimates of the real posi-
tions, a molecular dynamics cycle (see: Atomic forces and structural relaxation) had to
be used to determine the atomic positions of the relaxed structures. After the structural
relaxation, atoms close to the surface were the ones to change position most significantly,
as was expected, and a shift of the N atoms towards the surface of the tube was visible.
The wiirtzite bulk and g-1D structures and the graphene-like tubes were relaxed with a
force tolerance of less than 0.01 ¢V /Ang, but the higher diameter tube (5 nm} only reached
a tolerance of approximately 0.04 eV /Ang because of the time computational constraints
involved.

A special remark about the molecular dynamies relaxation process is that, although
the R = 5 nm, r = 3.6 nm nanotube structure had it’s atoms initially positioned in
a wiirtzite arrangement, it clearly switched from the wiirtzite to a somewhat complex,
double-sheet graphene-like structure (Fig.5.3), as opposed to all the others that main-
tained their general initial structure during the entire lattice relaxation process.

Figure 5.3: Lateral view of the nanotube with 5 nm diameter clearly showing a zig-zag
hexagonal graphene-like structure

In the case of the extended surface structure, the atomic positions used where
directly those of the final, relaxed structure.
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The investigation of the energy dispersion and density of states (DOS) was carried
out for each structure and compared to those of the bulk case. For three of the structures
more detailed investigation were carried out by plotting out some of the wavelunctions
and also by spatially extending the basis in the surface region,

A separate step was undertaken in order to observe the phonon dispersion in some of
the structures, Because this type of computation are rather time-demanding only some
of the simpler structures were analyzed,

5.2 Pseudopotentials

For both nitrogen and boron, the psendopotentials were generated with the Ceperley-
Adler scheme, the LDA exehange-correlation approach and without considering relativistic
effects.

in the case of boron the 1s orbital was included in the ionic core, the 25 orbital was
populated with two electrons and the 2p orbital with one electron:; for all orbitals the
cutting radius r,. was chosen 1.71 Bohrs.
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Figure 5.4: Boron s type orbitals: (top left) all electron wavefunction and pseudo-
wavefunction; (top right) the logarithmic derivative of the wavefunctions; (hottowm left)
the pseudopotential; (bottom right) the Fourler transform of the pseudopotential

The images depicting the pseudopotentials also include additional information
like: the all electron and pseudo-wavefunction which must be identical bevond r. and
their logarithmic derivatives that point out any unphyvsical discontinuities; the Fourier
transform of the pseudopotential which is important if the potential is expressed as a
Fourier series for certain computations,
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Figure 5.5: Boron p type orbitals: (top left) all electron wavefunction and pseudowave-
function; {top right) the logarithmic derivative of the wavefunctions - shows the discon-
tinuity at r.; (bottom left) the pseudopotential; {bottom right) the Fourier transform of
the pseudopotential

For nitrogen, the 1s orbital is again included in the ionic core, the 2p orbital is
populated with two electrons and the 2p orbital is populated with three electrons: for all
orbitals the cutting radius r. was chosen 1.45 Bohrs.
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Figure 5.6: Nitrogen s type orbitals: (top left) all electron wavefunction and pseadowave-
function; {top right) the logarithmic derivative of the wavefunctions - shows the discon-
tinuity at r.: (bottom left) the pseudopotential; {bottom right) the Fourier transform of
the pseudopotential
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Figure 5.7: Nitrogen p type orbitals: (top left) all electron wavefunction and pseudowave-
function; (top right) the logarithmic derivative of the wavefunctions - shows the discon-
tinuity at r.; (bottom left) the pseudopotential; (bottom right) the Fourier transform of
the pseudopotential
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5.3 Band structure DOS for bulk BN

Boron nitride (BN) is a wide band-gap semiconductor (5.05 eV - amorphous, 5.2 eV
- hexagonal, 4.5-5.5 eV wiirtzite, 5.5 eV - diamond) [29] [30]. BN is not found in nature
and amorphous-BN is produced synthetically from boric acid or boron trioxide. Alter-
nate methods of preparation or subsequent treatment is required in order convert the
amorphous form into others; for example, hexagonal BN is obtained by reacting boron
trioxide or boric acid with ammonia or urea in a nitrogen atmosphere, and wiirtzite BN
is obtained by high-pressure or by dynamic shock methods.

It must be mentioned that only graphene-like BN nanotubes have been synthesized
and that no records of wiirtzite BN nanowires or nanotubes currently exist.

For the confirmation of the pseudopotentials’ transferability, the energy dispersion
and density of states (DOS) have been plotted out for the bulk material (Fig.5.8} of
wiirtzite structure (Fig.5.9). The band structure is in agreement with that obtained by
other ab initio calculations [28] and the bandgap value is also close to those measured
experimentally: 5.9 eV, obtained here, as compared to the measured values of 5.5
eV {29} [30].
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Figure 5.8: Band structure and density of states for bulk BN

Figure 5.9: Atomic structure of wiirtzite BN crystal
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Because for the g-1D structures the periodicity is maintained only in the T-A
direction and in order to easily detect the differences in band structure between the bulk
material and the g-1D structures, the energy dispersion relation was mapped out for
the I'-A direction in the bulk material (see Fig. 5.10). It must be specified that the
DOS corresponding to the conduction band appears to be overhanging bevond the lfast
represented state, but that is the contribution from k-states that are not visible in the
I-A representation but that can be seen in the vieinity of the K point (Fig.5.8).

BN - bulk

o
I
|

[
[
|

E[eV]

-10
T A DOS

E =59eV
H

Figure 5.10: Band structure and density of states for bulk BN between " and A points

5.4 Band structure, DOS and plotted wavefuntions for
the g-1D structures

In order to associate the data to the corresponding structure in a more straight{or-
ward manner and in order to avoid repeating the representations of the unrelaxed and
relaxed nanowires/nanotubes in a separate section of this chapter, images with sections
of the nanotubes and nanowires, both before and after relaxation, are placed next to the
graphs.

For all band structure and DOS investigations the structural relaxation was carried
out in multiple steps in order to ensure the accuracy of the final results; this is done
by comparing the band structures for two successive relaxation steps until no important
changes arise.

As a general notation, 'R’ stands for the outer radius and 'r’ stands for the internal
radius of the tube.
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Figure 5.11: Band structure and DOS for the nanowire with R — 2 nm, r — 0 nm

Figure 5.12: Input positions and relaxed, output positions for the nanowire with R — 2
nm (boron in red and nitrogen in blue)
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Figure 5.13: Band structure and DOS for the nanowire with R = 2nm, r = 1 nm

Figure 5.14: Input positions and relaxed, output positions for the nanotube with R — 2
nmandr 1 nm

The changes in energy dispersion in the new structures is clearly visible: in the
case of the nanowire new states appear (Fig.5.11) in the bandgap region from the bulk
material as a consequence of the dangling bonds present on the surface. Although the dif-
ference is subtle, it can be seen that the secondary interior surface present in the nanotube
gives rise to even more states in the bandgap region (Fig.5.13) than in the case of the
nanowire; this is also visible as an increase in the density of states in the bandgap region
of the nanotube. The first bands below and above the Fermi energy level, which could be
considered the new valence and respectively conduction band, are both convex, and could
give rise van Hove singularities in the optical spectrum, if the transitions between them
are indeed allowed. Another detail worth mentioning is the negative descent of some of
the new bands, which give rise to negative electron masses. The lattice relaxation process
leads to small position changes for the outermost atoms and displaces the boron atoms
inward; these observations are valid for all wiirtzite structure mentioned in this work.
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For the next three cases, a more detailed investigation is carried out by using
both the simple and the spatially extended basis. For some of the examples, a number
of selected wavefunctions (the absolute value squared) are plotted in an isosurface repre-
sentation in order to show different types of spatial localization in the new structures; if
not mentioned otherwise, the value used for the isosurface represents a 0.5% probability
of localization, a value which was chosen low enough to discern some spatial distribution
but high enough in order to represent the area of high probability of localization. An
important note is that all the following statements are to be considered valid only for
the wavefunctions with energies located in the bulk bandgap interval. The isosurface of
the charge density is also plotted for a specific value of 1]eq/A?| (where ¢q stands for the
elementary charge) that gives the best visual image while highlighting the high charge
density areas.

E[eV]

DOS

Eg =251eV

Figure 5.15: Band structure and DOS for the R — 3.3 nm nanowire

Figure 5.16: Initial and relaxed structure of the R — 3.3 nm nanowire
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Figure 5.17: Surface localized wavefuntion plotted for thee different values of isosurfaces:
A-11 - 2%, A-12 - 5%, A-13 - 8%. Wavefunction localized inside the nanowire - A-2.
Charge density plot - A-3.

For the case of the R = 3.3 nm nanotube, the presence of surface states again
leads to the appearance of a set of new states in the bulk bandgap (Fig. 5.15). As far as
it was possible to determine, given the large number of individual states that are present
and taking into account that only a fraction of them were spatially plotted, these new
states all appear to be localized on the surface, similar to what can be seen in Fig. 5.17.

EleV]

DOS

Figure 5.18: Band structure and DOS for the R = 3.3 nm, r = 1.3 nm nanotube
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Figure 5.19: The unrelaxed and relaxed atomic position and the charge density distribu-
tion (C) for the R — 3.3 nm, r — 1.3 nm nanotube

In the band structure of this new tubular structure (Fig.5.19) an increase in
the number of states present in the bandgap and in their corresponding DOS is visible
(Fig.5.18) when compared to the nanowire with R — 3.3 nm at Fig.5.16. It is important
to notice that the new internal surface does not disrupt the surface states that appeared
in the case of the nanowire; it is worth mentioning that, as far as it was investigated, none
of the new states that appear in the [-2,-1] €V interval are clearly located on the interior
surface which could be explained by the fact that, even though some of the bonds of the
atoms located on this secondary surface are left dangling, the interaction with diametri-
cally opposed Coulomb tail of the pseudopotentials is strong enough in order to shift the
energy of any states located in this area outside the bandap range of energies; a direct
contribution to this effect is the relatively small spatial volume that a state located on
the surface would occupy, leading to it having a higher energy than a state that would be
located on the larger exterior surface.
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R~33nm r~2nm

Eg =24 eV

Figure 5.20: Band structure and DOS for the R — 3.3 nm, r — 2 nm nanotube

Figure 5.21: The unrelaxed and relaxed atomic position for the R = 3.3 nm, r = 1.3 nm
nanotube
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Figure 5.22: Examples of states localized on the interior surface E-1 to E-4 pointed out
in Fig.5.20 and charge density distribution E-5.

In the case of the R — 3.3 nm and r — 2 nm nanotube (Fig.5.21) an even higher
number of states are present in the bulk bandgap that lead to a higher DOS for the gap
energy interval. As in the case immediately above, the surface states that were present
in the case of the R — 3.3 nm nanowire are not drastically modified and only suffer a
small energy shift. An important difference is that, in this case, states can be found on
the interior surface because of a weaker interaction with the Coulomb tail of the opposed
ions and a larger localization volume. Another interesting fact that was observed is a
modulation of the spatial localization of the surface waves, for both interior and exterior
surfaces, that can have two, four or six maxima (Figh.22). What is also obvious now is
the rising of states from the valence band that bunch up in the [-8.2,-6] ¢V interval.

As mentioned in section 4.6, three of the structures have also been endowed with
a "more complete™ basis (Fig.5b.24, Fig.5.26, Figh.28) that should lead to a better treat-
ment of the presence surfaces. Although some diflerences are visible between results of
the normal and extended basis band structures (Figh.23, Fig.5.25, Fig.5.27), they are not
so dramatic: that is because of both B and N being light atoms, with very well localized
orbitals. However, it is believed that this treatment of surfaces would be much better
suited in the case of materials with delocalized d and f orbitals.
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R ~33nm extended surface

DOS
Eg =24leV

Figure 5.23: Band structure and DOS for the R = 3.3 nm nanowire endowed with a
surface extended basis

Figure 5.24: Atomic positions and locations of the additional surface extended basis (in
green) and charge density distribution for the R = 3.3 nm nanowire
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R~33nmm r~13nm extended surface

Figure 5.25: Band structure and DOS for the R — 3.3 nm, r — 1.3 nm nanotube endowed
with a surface extended basis

Figure 5.26: Atomic positions and locations of the additional surface extended basis (in
green) and charge density distribution for the R = 3.3 nm r = 1.3 nm nanotube
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R~33nm r~2nm extended surface

i —————— ———
E, : i
— e
10%_—*‘:{— —— e
I A DOS

Eg: 2.33eV

Figure 5.27: Band structure and DOS for the R = 3.3 nm, r — 2 nm nanotube endowed
with a surface extended basis

Figure 5.28: Atomic positions and locations of the additional surface extended basis (in
green) for the R = 3.3 nm r = 2 nm nanotube
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F-1 F-2 F-3

Figure 5.29: Two examples of surface localized wavefunctions (F-1 and F-2} and charge
density distribution (F-3)

The most obvious effect of the inclusion of the additional basis functions is a total
downshift in energy. Besides a somewhat more spatially spread out wavefunctions at the
surface, no other significant effect can be noticed. It is interesting to observe the
way in which the bandgap varies with the internal diameter, for a fixed external diame-
ter. in both normal and surface extended base cases. An inversely proportional relation
appears to exist between the internal diameter and the bandgap value. The effect of the
augmented basis is a lowering in bandgap energy.
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Figure 5.30: Bandgap variation with internal tube diameter (black-normal base; red-
surface extended base)

An attempt was made at establishing the properties of a larger diameter nanotube
with R — 5 nm and r — 3.6 nm. Because during the lattice relaxation it switched from
the wiirtzite to the complex double walled graphene-like nanotube structure (Fig.5.32},
it’s properties fail to completely resemble those of the structures mentioned so far, in that
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although new states do appear in the bulk bandgap, they overlap those from the valence
and conduction bands (Fig.5.31). It will be further seen that this band structure resembles
that of zig-zag and armchair graphene-like nanotubes although the bandgap value is still
closer to that of wiirtzite nanotube; this bandgap value is expected to increase if the
structure would be relaxed further.

R~5nm r~3.6nm

DOS

Eg =2.69eV

Figure 5.31: Band structure and DOS for the R — 5 nm. r — 3.6 nm nanotube

Figure 5.32: Initial and relaxed atomic positions for the R = 5 nm, r — 3.6 nm nanotube
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The next two examples are those of nanotubes similar in structure to single walled
carbon nanotubes and the main purpose for their investigation is to further confirm the
validity of the results by comparing their properties with other numerical simulations
and expertmental data. The two structures chosen where that of a hexagonal zig-zag
BN nanotube (Fig.5.34) with a diameter of 0.94 nm and a hexagonal armehair nanotube
(Fig.5.36) with a diameter of 0.82 nm. The bandgap values of both zig-zag (Fig.5.33)
and armchair (Fig.5.35) nanotubes are found to be in good agreement with experimental
results( [31]) with a value of 4.23 ¢V in the case of the zig-zag structure and 4.45 eV for
the armchair nanotube. A lack of any narrow mini-bands inside the bandgap can be seen,
as in the case of the R — 5 nm r — 3.6 nm nanotube (Fig.5.31).

zig-zag nanotube

DOS
Eg =425eV

Figure 5.33: Bands structure of a graphene-like zig-zag BN nanotube

Figure 5.34: Initial and relaxed atomic positions for the graphene-like zig-zag BN nan-
otube



CHAPTER 5. RESULTS 38

armchair nanolube

EleV]

DOS

Eg =445eV

Figure 5.35: Bands structure of a graphene-like armchair BN nanotube

Figure 5.36: Initial and relaxed atomic positions for the graphene-like armchair BN nan-
otube

5.5 Stability of the structures

By comparing the energy per atom ratio for the different structures it is possible to
identify those with a more stable structure, which also translates with a higher probability
of being syvnthesized to the detriment of others.
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H Structure tyvpe | gnergy per atom [eV] H

| Bulk | -180.911 |
R—2pmr— 0nm -180.438
R 2nmr 1nm -180.123
R—33umr—0nm -180.484
R 33nmr 1.3 nm -180.400
R—33umr— 2nm - 180.221
R 33nmr 0Onmes® -180.534
R—33nmr— 1.3 nmes* -180.469
R_33nmr —2nmaes® -180.318

H R—5nmr— 36 nm -180.532 H
zig-zag -180.692
armochair -180.669

(* e.8. — enhanced surface which refers to the base being enhaneed for the surface treat-
ment; B — external vadius, 1 — internal radins)

It can be seen that that the bulk crvstal remains the most stable of them all; the
zig-zag and armchair graphene-like stroctures come second: the largest nanotube (R — 5
nm, r — 3.6 nm) that switched from a wiirtzite type to a graphene-like nanotube struc-
ture, although it went through the least number of relaxation steps out of the entire set
of structures, also shows a stable structure: out of the wiirtzite structures, the nanowires
remain more stable than the nanotubes of similar external diameter and in the case of
the tubular structures, the stability decreases with the increase of internal diameter.

5.6 Phonon dispersion

Another set of diferences between -1D structures and bulk BN material can also be
seen by analyzing the phonon dispersion. Due to computational constrainés. only some
of the structures mentioned up until now have been studied further in this section. The
method used to obtain the phonon dispersion was mentioned in Section 4.5 but an addi-
tional program entitled "vib2axst", that was developed by Andrei Postnikov. and that is
also part of the SIESTA package was used to graphically represent the first six phonon
modes starting from frequency Olem™"] npwards in order to have a visually clear proof of
the differences between them; the reason for choosing the fivst six modes is just that these
are the stimpler ones to understand in terms of the motion of the constituent atoms,

In Fig.h.37 the BN bulk phonon frequencies (in the I point), as compnted in [32],
Lhave been superimposed over a part of the phonon dispersion dispersion graph of the BN
wiirtzite R — 2 nm nanowire. It can be clearly seen that a dramatic deviation from the
bulk behavior takes place and that there is an almost continuous spectrum of modes up
until 1250[(:-’}rz-_ ']; this deviation from the reduced number of phonon modes found in the
bulk material is an effect given by the 1D confination, the new symmetry of the system
and surface relaxation effects that lifts the degeneracy of equivalent modes that can be
found in the bulk material but also gives rise to new class of phonon modes without any
bulk counterparts. An important observation is that the usual gap (for the dispersion
along the I'-A direction) between the bulk LO) and TO L values vanishes. The phonon
modes that can be found above the 1320[cm Y| frequency appear due to the relaxation
of the outer atomic layer (Fig.5.38) that leads to a higher force constant for between
some of these atoms which translates to a higher frequency of oscillation for these surface
phonons. The phonon modes found just above the 1350[cmn ™1} appear to have nondisper-
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sive behavior. The modes found above 1400[cm ] are of a mixed type, with both atoms
found on the surface and inside the nanowire taking part in the oscillation, but the major
contribution is still that from surface. All the surface modes appear to have a longitudinal

polarization, parallel to nanowire’s optical axis, since the great majority of the atoms, but
not all, oscillate in such a way.
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Figure 5.37: Phonon dispersion for R — 2 nm wiirtzite nanowire with superimposed bulk
modes

Figure 5.38: Graphical representation of force vector/atom for a surface phonon

in order to have a visual representation of the phonon modes found in a BN
nanowire, the first six have been represented in Fig.5.39. Even amongst these very few
number of modes there are examples of degeneracy lifting and new, confination deter-
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mined, modes: the first three are the normal acoustic modes found in the bulk mate-
rial that give rise to oscillations on the three axes, the fourth is an example of torsional
acoustic-like vibration specific 1D structures, and the third and fourth are examples of lon-
gitudinal shear acoustic-like modes that deviate from the “z” axis acoustic branch. These
modes are being called acoustic-like because of the strong resemblance to the acoustic
phonon modes where the neighbouring lattice ions move in phase, but since their fre-
quency is not zero at a zero wavevector they are not strictly acoustic.

Figure 5.39: Graphical representation of force vector/atom for first six (from left to right)
acoustic and acoustic-like modes in the R — 2 nm nanowire

The phonon dispersion behavior found for the R = 2 nm, r = 1 nm BN nanotube
(Fig.5.40) is consistent with that of the R = 2 nm nanowire and shows obvious similarities.
All the observations that were made for the phonon dispersion in the R = 2 nm nanowire
also remain valid in this case. It is worth mentioning that, although the secondary sur-
face alters the phononic behavior by producing a mini-band with a distinct dispersion
characteristic in 1340-1342[cm ! region, it is not possible to speak about phonons being
localized on the interior or exterior surface because the surfaces of this tube are not easily
distinguishable.
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Figure 5.40: Phonon dispersion for R — 2 nm, r — 1 nm wiirtzite nanotube with super-
imposed bulk modes

What is noticeable in Fig.5.41 is that the shear modes for the nanotube are locates
further up the frequency scale, being preceded by a series of oblong modes.

Figure 5.41: Graphical representation of force vector/atom for first six acoustic and
acoustic-like modes in the R — 2 nm, r — 1 nm nanotube

The main difference between the two cases mentioned above and the phonon
dispersion spectrum of the R = 3.3 nm, r = 1.3 nm is that a shift has taken place,
raising the whole spectrum and placing the first surface phonon mode at 1390[cm ™). A
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secondary, isolated, surface phonon band is located between 1807-1827[cm!|. As before,
the surface phonon modes are characterized by a longitudinal polarization, parallel to the
optical axis of the nanotube.
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Figure 5.42: Phonon dispersion for R = 3.3 nm, r = 1.3 nm wiirtzite nanowire with
superimposed bulk modes

In Fig.5.43 it can be observed that the first six modes are similar to the ones of
the R — 2 nm, r — 1 nm nanotube (Fig.5.41) although their order seems to be changed: it
is not known if this is a real effect or just an unwanted side effect of an incomplete lattice
relaxation.
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Figure 5.43: Graphical representation of force vector/atom for first six acoustic and
acoustic-like modes in the R — 3.3 nm, r — 1.3 nm nanotube

The next two systems are those of a single layered graphene-like BN nanotube.
Both the phonon dispersion spectra of zig-zag (Figh.44) and of the armchair structure
(Fig.5.46) appear to have little resemblance to that of the hexagonal BN sheet [33]. A
resemblance between these two types of nanotubes is a very similar maximum frequency
of 1550[ern Y for the zig-zag tube and 1548{em ! for the armchair tube.
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Figure 5.44: Phonon dispersion for zig-zag graphene-like nanotube
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Figure 5.45: Graphical representation of foree vector/atom for first six acoustic and
acoustic-like modes in the zig-zag nanotube

The first six acoustic and acoustic-like phonon modes of the zig-zag (Fig.5.45) and
armchair nanotubes (Fig.5.47) are similar, although they are not found in the same order;
a peculiarity of the armchair nanotube is an elliptical torsional phonon mode. Both of
these sets of six modes are similar to those found in the wiirtzite BN nanotubes (Fig.5.41
and Fig.5.43) but differ form the BN nanowire (5.39) revealing a similar feature of tubular
structures.
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Figure 5.46: Phonon dispersion for armchair graphene-like nanotube

Figure 5.47: Graphical representation of force vector/atom for first six acoustic and
acoustic-like modes in the armchair nanotube
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Conclusions and final remarks

A computational study has been carried out to reveal the differences that arise in
the electrontc and phononic properties of some sclected -1 struetures when compared
to the butk material, Psendopotentials have heen construeted for the treatment of horon
nitride.

The effects given by the surfaces have been investigated and it has heen shown that
for the g-1D structures new states appear in bandgap of the bulk material, and that
these new states are located preponderantly on the exterior surface of both nanotubes
and nanowires; this leads to a decrease of the effective bangap and thus points out to
electronic and thermoelectric uses of the -1D structures that would be inappropriate for
the bulk wilrtzite BN isolator. An attempt has been made at obtaining better basis sets
for the treatment of surfaces and the lower total energy achieved for the systems endowed
with these kinds of bases has proven their use.

The stability of such structures has also been investigated showing that wiirtzite
nanowires are more stable than nanotubes of same sizes and that graphene-like nan-
otubes are even more stable than both wiirtzite nanowires and nanotubes,

More dissimilarities between bulk BN and -1D nanotubes and nanowires have heen
pointed ont hy a study of the phonon dispersion spectrum.  The differences compared
to the bulk system are discussed, revealing a multitude of new acounstic-like and optical
phononic branches, which are a divect consequence of the ¢-1D character of the systems,

It must be stressed that the work presented here represents only a steeping stone
towards more important results like: electron and phonon transport through g-1D strue-
tures, computing Seebeck coefficients and figures of merit of such devices, investigating
electron-phonon interaction or the effects of dopant or magnetic impurities in nanowires
and nanotubes.
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