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PREFACE 

FIRST draft of this book was published in 1921 as a mathematical supple- 

ment to the French Edition of Space, Time and Gravitation. During 

the ensuing eighteen months I have pursued my intention of developing it 

into a more systematic and comprehensive treatise on the mathematical 

theory of Relativity. The matter has been rewritten, the sequence of the argu- 

ment rearranged in many places, and numerous additions made throughout; 

‘so that the work is now expanded to three times its former size. It is hoped 

that, as now enlarged, it may meet the needs of those who wish to enter fully 

into these problems of reconstruction of theoretical physics. 

The reader is expected to have a general acquaintance with the less 

technical discussion of the theory given in Space, Time and Gravitation, 

although there is not often occasion to make direct reference to it. But it is 

eminently desirable to have a general grasp of the revolution of thought 

associated with the theory of Relativity before approaching it along the 

narrow lines of strict mathematical deduction. In the former work we ex- 

plained how the older conceptions of physics had become untenable, and traced 

the gradual ascent to the ideas which must supplant them. Here our task is 

to formulate mathematically this new conception of the world and to follow 

out the consequences to the fullest extent. 

The present widespread interest in the theory arose from the verification 

of certain minute deviations from Newtonian laws. To those who are still 

hesitating and reluctant to leave the old faith, these deviations will remain 

the chief centre of interest; but for those who have caught the spirit of the 

new ideas the observational predictions form only a minor part of the subject. 

It is claimed for the theory that it leads to an understanding of the world of . 

physics clearer and more penetrating than that previously attained, and it 

has been my aim to develop the theory in a form which throws most light 

on the origin and significance of the great laws of physics. , 

It is hoped that difficulties which are merely analytical have been mini- 

mised by giving rather fully the intermediate steps in all the proofs with 

abundant cross-references to the auxiliary formulae used. 

For those who do not read the book consecutively attention may be called 

to the following points in the notation. The summation convention (p. 50) 

is used. German letters always denote the product of the corresponding 

English letter by 4 —g (p. 111). 1) is the symbol for “ Hamiltonian differen- 

tiation” introduced on p. 189. An asterisk is prefixed to symbols generalised 
so as to be independent of or covariant with the gauge (p. 203).
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A selected list of original papers on the subject is given in the Biblio- 
graphy at the end, and many of these are sources (either directly or at 
second-hand) of the developments here set forth. To fit these into a con- 
tinuous chain of deduction has involved considerable modifications from their 
original form, so that it has not generally been found practicable to indicate 
the sources of the separate sections. A: frequent cause of deviation in treat- 
ment is the fact that in the view of most contemporary writers the Principle 
of Stationary Action is the final governing law of the world; for reasons 
explained in the text I am unwilling to accord it so exalted a position. After 
the original papers of Einstein, and those of de Sitter from which I first 
acquired an interest in ‘the theory, I am most indebted to Weyl's Raum, Zeit, 
Materie., Weyl’s influence will be especially traced in §§ 49, 58, 59, 61, 63, as 
well as in the sections referring to his own theory. 

I am under great obligations to the officers and staff of the University 
Press for their help and care in the intricate printing. 
a Oo A.S. E. 

* 10 August 1922.
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INTRODUCTION 

THE subject of this mathematical treatise is not pure mathematics but 
physics. The vocabulary of the physicist comprises a number of words such 
as length, angle, velocity, force, work, potential, current, ete., which we shall 
call briefly “ physical quantities.” Some of these terms occur in pure mathe- 
matics also; in that subject they may have a generalised meaning which does 
not concern us here. The pure mathematician deals with ideal quantities 
defined as having the properties which he deliberately assigns to them. But 
in an experimental science we have to discover properties not to assign them ; 
and physical quantities are defined primarily according to the way in which 
we recognise them when confronted by them in our observation of the world 

around us. , 
Consider, for example, a length or distance between two points. It is 

a numerical quantity associated with the two points; and we all know the 
procedure followed in practice in assigning this numerical quantity to two 
points in nature. A definition of distance will be obtained by stating the 
exact procedure; that clearly must be the primary definition if we are to 
make sure of using the word in the sense familiar to everybody. The pure 
mathematician proceeds differently; he defines distance as an attribute of 
the two points which obeys certain laws—the axioms of the geometry which 
he happens to have chosen—and he is not concerned with the question how 
this “distance” would exhibit itself in practical observation. So far as his own 
investigations are concerned, he takes care to use the word self-consistently ; 
but it does not necessarily denote tlie thing which the rest of mankind are 
accustomed to recognise as the distance of the two points. 

To find out any physical quantity we perform certain practical operations 
followed by calculations; the operations are called experiments or observations 
according as the conditions are more or less closely under our control. The 

physical quantity so discovered is primarily the result of the operations and 
calculations; it is, so to speak, a manufactured article—manufactured by 
‘our operations. But the physicist is not generally content to believe that the 

quantity he arrives at is something whose nature is inseparable from the kind 
of operations which led to it; he has an idea that if he could become a god 
contemplating the external world, he would see his manufactured physical 
quantity forming a distinct feature of the picture. By finding that he can 
lay 2 unit measuring-rods in a line between two points, he has manufactured 
the quantity # which he calls the distance between the points; but he believes 
that that distance « is something already existing in the picture of the world 
—a gulf which would be apprehended by a superior intelligence as existing 
in itself without reference to the notion of operations with measuring-rods. 

E 1



2 INTRODUCTION 

Yet he makes curious and apparently illogical discriminations. The parallax 
of a star is found by a well-known series of operations and calculations; the 
distance across the room is found by operations with a tape-measure. Both parallax and distance are quantities manufactured by our operations: but for some reason we do not expect parallax to appear as a distinct element in the true picture of nature in the same way that distance docs. Or again, instead of cutting short the astronomical calculations when we reach the parallax, we might go on to take the cube of the result, and so obtain another manufactured quantity, a “cubic parallax.” For some obscure reason we expect to see distance appearing plainly as a gulf in the true world-picture ; parallax does not appear directly, though it can be exhibited as an angle by a comparatively simple construction ; and cubic parallax is not in the picture at all. The physicist would say that he finds a length, and manufactures a cubic parallax; but it is only because he has inherited a preconceived theory of the world that’ he makes’ the distinction. We shall venture to challenge this distinction. 

, Distance, parallax and cubic parallax have the same kind of potential existence even when the operations of measurement are not actually made— uf you will move sideways you will be able to determine the angular shift, if you will lay measuring-rods in a line to the object you will be able to count their number. Any one of the three is an indication to us of some existent condition or relation in the world outside us—a condition not created by our operations. But there seems no reason to conclude that this world-condition resembles distance any more closely than it resembles parallax or cubic parallax. Indeed any notion of « resemblance” between physical quantities and the world-conditions underlying them seems to be inappropriate. If the length AB is double the length CD, the parallax of B from 4 is half the paral- lax of D from C; there is undoubtedly some world-relation which is different for AB and CD, but there is no reason to regard the world-relation of AB as being better represented by double than by half the world-relation of CD, ' The connection of manufactured physical quantities with the existent world-condition can be expressed by saying that the physical quantities are measure-numbers of the world-condition, Measure-numbers may be assigned according to any code, the only requirement being that the same measure- number always indicates the same world-condition and that different world- conditions receive different measure-numbers, Two or more physical quantities may thus be measure-numbers of the same world-condition, but in different codes, e.g. parallax and distance; mass and energy ; stellar magnitude and lumi- nosity. The constant formulae connecting these pairs of physical quantities give the relation between the respective codes, But in admitting that physical quantities can be used as measure-numbers of world-conditions existing independently of our operations, we do not alter their status as manufactured quantities. The same series of Operations will naturally manufacture the
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same result when world-conditions are the same, and different results when 
they are different. (Differences of world-conditions which do not influence 
the results of experiment and observation are ¢pso facto excluded from the 
domain of physical knowledge.) The size to which a crystal grows may be a 
measure-number of the temperature of the mother-liquor; but it is none the 
less a manufactured size, and we do not conclude that the true nature of size 
is caloric. 

The study of physical quantities, although they are the results of our 
own operations (actual or potential), gives us some kind of knowledge of the 
world-conditions, since the same operations will give different results in 
different world-conditions. It seems that this indirect knowledge is all that 
we can ever attain, and that it is only through its influences on such opera- 
tions that we can represent to ourselves a “condition of the world.” Any 
attempt to describe a condition of the world otherwise is either mathematical 
symbolism or meaningless jargon. To grasp a condition of the world as . 
completely as it is in our power to grasp it, we must have in our minds a 

symbol which comprehends at the same time its influence on the results of 
all possible kinds of operations. Or, what comes to the same thing, we must 

contemplate its measures according to all possible measure-codes—of course, 
without confusing the different codes. It might well seem impossible to 
realise so comprehensive an outlook; but we shall find that the mathematical 
calculus of tensors does represent and deal with world-conditions precisely. i in 
this way. A tensor expresses simultaneously the whole group of measure- 
numbers associated with any world-condition; and machinery is provided for 
keeping the various codes distinct. For this reason the somewhat difficult 
tensor calculus is not to be regarded as an evil necessity in this subject, which 
ought if possible to be replaced by simpler analytical devices; our knowledge 
of conditions in the external world, as it comes to us through observation and’ 
experiment, is precisely of the kind which can be expressed by a tensor and 
not otherwise. And, just as in arithmetic we can deal freely with a billion 
objects without trying to visualise the enormous collection; so the tensor 
calculus enables us to deal with the world-condition in the totality of its 
aspects without attempting to picture it. 

Having regard to this distinction between physical quantities and world- 
conditions, we shall not define a physical quantity as though it were a feature 
in the world- picture which had to be sought out. ..A physical quantity is 
defined by the series of operations and calculations of which it ts the result. 
The tendency to this kind of definition had progressed far even in pre-relativity: 
physics. Force had become “ mass x acceleration,” and was no longer an in- 
visible agent in the world-picture, at least so far as its definition was concerned. 
Mass is defined by experiments on inertial properties, no longer as “ quantity 
of matter.” But for some terms the older kind of definition (or lack of. 
definition) has been obstinately adhered .to;- and. for these the. relativity: 

1—?
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theory must find new definitions. .In most cases there is no great difficulty in framing them. We do not need to ask the physicist what conception 
he attaches to “length”; we watch him measuring length, and frame our definition according to the operations he performs. There may sometimes be cases in which theory outruns experiment and requires us to decide between two definitions, either of which would be consistent with present experimental practice; but usually we can foresee which of them corresponds to the ideal which the experimentalist has set before himself. For example, until recently the practical man was never confronted with problems of non-Euclidean space, and it might be suggested that he would be uncertain how to construct a straight line when’ so confronted; but as a matter of fact he showed no hesitation, and the eclipse observers measured without ambiguity the bending of light from the “ straight line.” The appropriate practical definition was so obvious that there was never any danger of different people meaning different loci by this term. Our guiding rule will be that a physical quantity must be defined by prescribing operations and calculations which will lead to an unambiguous result, and that due heed must be paid to existing practice; the last clause should secure that everyone uses the term to denote the same quantity, however much disagreement there may be as to the conception attached to it. , 
When defined in this way, there can be no question as to whether the Operations give us the real physical quantity or whether some theoretical correction (not mentioned in the definition) is needed. The physical quantity is the measure-number of a world-condition in some code; we cannot assert that a code is right or Wrong, or that a measure-number is real or unreal; what we require is that the code should be the accepted code, and the measure- number the number in current use. For example, what is the real difference of time between two events at distant places? The operation of determining time has been entrusted to astronomers, who (perhaps for mistaken reasons) have elaborated a regular procedure. If the times of the two events are found 

obtain a definition of time, we remark that one condition is adhered to in 
practice evidently from necessity and not from design—the observer and his 
apparatus are placed on the earth and ‘move with the earth. This condition 
1g 80 accidental and parochial that we are reluctant to insist on it in our 
definition of time; yet it so happens that the motion of the apparatus makes
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as specified in our definition, is also measuring time—not our time, but a 
time relative to himself. The same relativity affects the great majority of 
elementary physical quantities *; the description .of the operations is insuf- 
ficient to lead to a unique answer unless we arbitrarily prescribe a particular 
motion of the observer and his apparatus. 

In this example we have had a typical illustration of “relativity,” the 
recognition of which has had far-reaching results revolutionising the outlook 

_of physics. Any operation of measurement involves a comparison between 
a measuring-appliance and the thing measured. Both play an equal part in 
the comparison and are theoretically, and indeed often practically, inter- 
changeable; for example, the result of an observation with the meridian circle 
gives the right ascension of the star or the error of the clock indifferently, 
and we can regard either the clock or the star as the instrument or the 
object of measurement. Remembering that physical quantities are results of 
comparisons of this kind, it is clear that they cannot be considered to belong 
solely to one partner in the comparison. It is true that we standardise the 
measuring appliance as far as possible (the method of standardisation being 
explained or implied in the definition of the physical quantity) so that in 
general the variability of the measurement can only indicate-a variability of 
the object measured. To that extent there is no great practical harm in 
regarding the measurement as belonging solely to the second partner in 
the relation. But even so we have often puzzled ourselves needlessly over 
paradoxes, which disappear when we realise that the physical quantities are 
not properties of certain external objects but are relations between these 
objects and something else. Moreover, we have seen that the standardisation 
of the measuring-appliance is usually left incomplete, as regards the specifica- 
tion of its motion; and rather than complete it in a way which would be 
arbitrary and pernicious, we prefer to recognise explicitly that our physical 
quantities belong not solely to the objects measured but have reference also 
to the particular frame of motion that we choose. 

The principle of relativity goes still further. Even if the measuring- 
appliances were standardised completely, the physical quantities would still 
involve the properties of the constant standard. We have seen that the © 
world-condition or object which is surveyed can only be apprehended in our 
knowledge as the sum total of all the measurements in which it can be 
concerned ; any intrinsic property of the object must appear as a uniformity 
or law in these measures. When one partner in the comparison is fixed and 
the other partner varied widely, whatever is common to all the measurements 

may be ascribed exclusively to the first partner and regarded as an intrinsic 
property of it. Let us apply this to the converse comparison; that is to say, 
keep the measuring-appliance constant or standardised, and vary as widely 
as possible the objects measured—or, in simpler terms, make a particular 

* The most important exceptions are number (of discrete entities), action, and entropy. ~
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kind of measurement in’ all parts of the field. ‘Intrinsic properties of the measuring-appliance should appear as uniformities or laws in these measures, We are familiar with several such uniformities; but we have not generally recognised them as properties of the measuring-appliance. We have called them laws of nature} . . . The development of physics is progressive, and as the theories of the external world become crystallised, we often tend to replace the elementary physical quantities defined through operations of measurement by theoretical quantities believed to have a more fundamental significance in the external world. Thus the vis viva mv*, which is immediately determinable by experi- ment, becomes replaced by a generalised energy, virtually defined by having the property of conservation; and our problem becomes inverted—we have not to discover the properties of a thing which we have recognised in nature, but to discover how to recognise in nature a thing whose properties we have assigned. This development seems to be inevitable; but it has grave draw- backs ‘especially when theories have to be reconstructed. Fuller knowledge may show that there is nothing in nature having precisely the properties 

When we decide to throw the older theories into the melting-pot and make a clean start, it is best to relegate to the background terminology associated with special hypotheses of physics. Physical quantities defined by operations of measurement are independent of theory, and form the proper starting-point for any new theoretical development. 
’ Now that we have explained how physical quantities are to be defined, the reader may be surprised that we do not proceed to give the definitions of the leading physical quantities. But to catalogue all the Precautions and provisos in the operation of determining even so simple a thing as length, is a task which we shirk. We might take refuge in the statement that the task 

be more cautious, I should be puzzled to say off-hand what is the series of operations and calculations involved in measuring a length of 10-5 cm.; nevertheless I shall refer to such a length when necessary as though it were 
a quantity of which the definition is obvious, We cannot be forever examining our foundations; we look Particularly to those places where it is reported to 
us that they are insecure. I may be laying myself open to the charge that 
I am doing the very thing I criticise in the older physics—using terms that 

* We shall see in § 59 that this has happened in the case of ener, 
superseded theory continues to embarrass us, because in this case the still has implicit reference to it. This, however, is only a slight drawbac many advantages obtained from the classical generalisation of energy as complete theory,
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have no definite observational meaning, and mingling with my physical 
quantities things which are not the results of any conceivable experimental 
operation. I would reply— 

By all means explore this criticism if you regard it as a promising field 
of inquiry. I here assume that you will probably find me a justification for 
my 10-* em.; but you may find that there is an insurmountable ambiguity 
in defining it. In the latter event you may be on the track of something 
which will give a new insight into the fundamental nature of the world. 
Indecd it has been suspected that the perplexities of quantum phenomena 
may arise from the tacit assumption that the notions of length and duration, 
acquired primarily from experiences in which the average effects of large 

numbers of quanta are involved, are applicable in the study of individual 
quanta. There may need to be much more excavation before we have brought 
to light all that is of value in this critical consideration of: experimental 
knowledge. Meanwhile I want to set before you the treasure which has 
already been unearthed in this field.



CHAPTER I 

ELEMENTARY PRINCIPLES 

1. Indeterminateness of the space-time frame. 
It has been explained in the early chapters of Space, Time and Gravitation that observers with different motions use different reckonings of space and time, and that no one of these reckonings is more fundamental than another. Our problem is to construct a method of description of the world in which this indeterminateness of the Space-time frame of reference is formally recognised, 
Prior to Einstein's researches no doubt was entertained that there existed a “true even-flowing time” which was unique and universal. The moving observer, who adopts a time-reckoning different from the unique true time, must have been deluded into accepting a fictitious time with a fictitious - -Space-reckoning modified to correspond.. The compensating behaviour of electromagnetic forces and of matter is so perfect that, so far as present knowledge extends, there is no test which will distinguish the true time from the fictitious. But since there are many fictitious times and, according to this view, only one true time, some kind of distinction is implied although its nature is not indicated, 
Those who still insist on the existence of a unique “true time” generally rely on the possibility that the resources of experiment are not yet exhausted and that some day a discriminating test may be found. But the off-chance that a future generation may discover a significance in our utterances is scarcely an excuse for making meaningless noises, Thus in the phrase true time, “true” is an epithet whose meaning has yet to be discovered. It is a blank label. We do not know what is to be written 

has accumulated, the words time and Space refer to one of the “fictitious” 
times and Spaces—primarily that adopted by an observer travelling with the earth, or with the sun—and our theory will deal directly with these space- 
time frames of reference, which are admittedly fictitious or, in the more usual 

é . , . ; the partitions repre- 
senting his space and time reckonings are imaginary surfaces drawn in the 
world like the lines of latitude and longitude drawn on the earth. They do
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not follow the natural lines of structure of the world, any more than the 
meridians follow the lines of geological structure of the earth, Such a mesh- 
system is of great utility and convenience in describing phenomena, and we 
shall continue to employ it; but we must endeavour not to lose sight of its - 
fictitious and arbitrary nature. 

It is evident from experience that a four-fold mesh-system must be used ; 
and accordingly an event is located by four coordinates, generally taken as 
z,y,2,t. To understand the significance of this location, we first consider 

the simple case of two dimensions. If we describe the points of a plane figure 
by their rectangular coordinates 2, y, the description of the figure is complete 
and would enable anyone to construct it; but it is also more than complete, 
because it specifies an arbitrary element, the orientation, which is irrelevant 
to the intrinsic properties of the figure and ought to be cast-aside from 
a description of those properties. Alternatively we can describe the figure by 
stating the distances between the various pairs of points in it;.this descrip- 
tion is also complete, and it has the merit that it does not prescribe the 
orientation or contain anything else irrelevant to the intrinsic properties of 
the figure. The drawback is that it is usually too cumbersome to use in 

practice for any but the simplest figures. 
Similarly our four coordinates a, y, z,& may be expected to contain an 

arbitrary element, analogous to an orientation, which -has nothing to do with 
the properties of the configuration of events. A different set of values of 
x, y, 2, may be chosen in which‘this arbitrary element of the description i is 
altered, but the configuration of events remains unchanged. It is this 
arbitrariness in coordinate specification which appears as the indeterminate- 
ness of the space-time frame. The other method of description, by giving the 

distances between every pair of events (or rather certain relations between 
pairs of events which are analogous to distance), contains all that is relevant 

' to the configuration of events ‘and nothing that is irrelevant. By adopting 

this latter method we can strip away the “arbitrary part of the description, 

leaving only that which has an exact counterpart in the configuration of the 
external world. 

To put the contrast in another form, in our common outlook the idea of 

position or location seems to be fundamental. From it we derive distance or 

extension as a subsidiary notion, which covers part but not all of the con- 

ceptions which we associate with location. Position is looked upon as the 

physical fact—a coincidence with what is vaguely conceived of as an 

identifiable point of space—whereas distance is looked upon as an abstraction 

ora computational result calculable when the positions are known. The view 

which we are going to adopt reverses this. Extension (distance, interval) is 

now fundamental; and the location of an object is a computational result 

summarising the physical fact that it is at certain intervals from the other 

objects in the world. Any idea contained in the concept location which is not
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expressible by reference to distances from other objects, must be dismissed from our minds. Our ultimate analysis of space leads us not to a “here” and 
a “there,” but to an extension such as that which relates “here” and “there.” _ To put the conclusion rather crudely—space is not a lot of points close together ; it is a lot of distances interlocked. . 

Accordingly our fundamental hypothesis is that— 
Everything connected with location which enters into observational know- ledge—everything we can know about the configuration of events—is contained in a relation of extension between pairs of events, 
This relation is called the interval, and its measure is denoted by ds. If we have a system S consisting of events A,B,C, D,...,anda system S’ consisting of events A’, B,C’, D’, ..., then the fundamental hypothesis implies that the two systems will be exactly alike observationally if, and only if, all pairs of corresponding intervals in the two systems are equal, AB= A'D’, AC=A'C’,.... In that case if S and §’ are material systems they will appear to us as precisely similar bodies or mechanisms; or if S and S’ correspond to the same material body at different times, it will appear that the body has not undergone any change detectable by observation. But the position, motion, or orientation of the body may be different; that is a change detect- able by observation, not of the system S, but of a wider system comprising S and surrounding bodies, 
Again let the systems S and S” be abstract coordinate-frames of reference, the events being the corners of the meshes; if all corresponding intervals in 

2. The fundamental quadratic form, | 
We have to keep side by side the two methods of describing the con- figurations of events by coordinates and by the mutual intervals, respectively —the first for its conciseness, and the second for its immediate absolute significance. It is therefore necessary to connect the two modes of description , 

& events with coordinates &,+da,) in any coordinate-system 

ds? = Gn dary? + 9ndx,? 4- Ysa des? 4- Juda? + 29:2.da, dity + 2915 az, ax, + 29:.da, da, 4. 2923d,Ax5 +- 292,dx,dx, + 29udasda,...... (2'1), where the coefficients Ju, ete. are functions of x, is son : . ®2, 3, X. That is to sa 
ds? is some quadratic function of the differences of c nates Says oordinates,
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This is, of course, not the most general case conceivable; for example, we - 

might have a world in which the interval depended on a general quartic 
function of the dx’s. But, as we shall presently see, the quadratic form (2°1) is 
definitely indicated by observation as applying to the actual world. Moreover 
near the end of our task (§ 97) we shall find in the general theory of relation- 
structure a precise reason why a quadratic function of the coordinate- 
differences should have this paramount importance... 

Whilst ‘the form of the right-hand side of (2°1) is that required by’ 
observation, the insertion of ds? on the left, rather than some other function 
of ds, is merely a convention. The quantity ds is a measure of the interval. 
It is necessary to consider carefully how measure-numbers are to be affixed 
to the different intervals occurring in nature. We have seen in the last 

section that equality of intervals can be tested observationally; but so far 
as we have yet gone, intervals are merely either equal or unequal, and their 
differences have not been further particularised. Just as wind-strength may 
be measured by velocity, or by pressure, or by a number on the Beaufort 
scale, so the relation of extension between two events could be expressed 
numerically according to many different plans. To conform to (2°1) a 
particular code of measure-numbers must be adopted; the-nature and 
advantages of this code will be explained in the next. section., 

The pure geometry associated with the general formula (2: 1) was studied 
by Riemann, and is generally called Riemannian geometry. It includes 
Euclidean geometry as a special case. 

8. Measurement of intervals. 

Consider the operation of proving by measurement that a distance AB is 
equal to a distance CD. We take a configuration of events LMNOP..., viz. a 
measuring-scale, and lay it over AB, and observe that A and B coincide with 
two particular events P, Q (scale-divisions) of the configuration. We find 
that the same configuration® can also be arranged so that C and D coincide 
with P and Q respectively. Further we apply all possible tests to the 
measuring-scale to see if it has “changed” between the two measurements; 
and we are only satisfied that the measures are correct if no observable 
difference can be detected. According to our fundamental axiom, the absence 
of any observable difference between the two configurations (the structure of 

the measuring-scale i in its two positions) signifies that the intervals are un- 
changed; in particular the interval between P and Q is unchanged. It follows 

that the interval A to B is equal to the interval C to D. We consider that the © 

experiment proves equality of distance ; but it is primarily a test of equality 
of interval. ; 

* The logical point may be noticed that the measuring-scale in two positions (necessarily at 

different times) represents the same consiguration of events, not the same events.
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In this experiment time is not involved; and we conclude that in space 
considered apart from time the test of equality of distance is equality of 
interval. There is thus a one-to-one correspondence of distances and intervals. 
We may therefore adopt the same measure-number for the interval as is in 
general use for the distance, thus settling our plan of affixing measure- 
numbers to intervals. It follows that, when time is not involved, the interval 
reduces to the distance. 

It is for this reason that the quadratic form (2°1) is needed in order to agree with observation, for it is well known that in three dimensions the square of the distance between two neighbouring points is a quadratic function of their infinitesimal coordinate-differences——a result depending ultimately on the experimental law expressed by Euclid 1, 47, 
When time is involved other appliances are used for measuring intervals. If we have a mechanism capable of cyclic motion, its cycles will measure equal intervals provided the mechanism, its laws of behaviour, and all relevant surrounding circumstances, remain precisely similar. For the phrase “ precisely similar” means that no observable differences can be detected in the mechanism or its behaviour; and that, as we have scen, requires that all corresponding intervals should be equal. In particular the interval between the events marking the beginning and end of the cycle is unaltered. Thus a clock primarily measures equal intervals ; it is only under more restricted conditions that it also measures the time-coordinate t. 

In general any repetition of an operation under similar conditions, but for a different time, place, orientation and velocity (attendant circumstances which have a relative but not an absolute significance), tests equality of interval, 
It is obvious from common experience that intervals which’ can be measured with a clock cannot be measured with a scale, and vice versa. We have thus two varieties of intervals, which are provided for in the formula (2'1), since ds* may be positive or negative and the measure of the interval will accordingly be expressed by a real or an imaginary number. The abbreviated phrase “imaginary interval” must not be allowed to mislead ; there is nothing imaginary in the corresponding relation; it is merely that in our arbitrary code an imaginary number ig assigned as its measure-number, We might have adopted a different code, and have taken, for example, the antilogarithm of ds* as the measure of the interval; in that case space- intervals would have received code-numbers from 1 to co, and time-intervals
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4. Rectangular coordinates and time. 

Suppose that we have a small region of the world throughout which the 
g’s can be treated as constants*. In that case the right-hand side of (271) can 
be broken up into the sum of four squares, admitting imaginary coefficients 
if necessary. Thus writing = - 

yy = QD, + 4X2 + Asl3 + A, 

Yo = b 2, + bgay + bx; +b,a,; ete., 

so that dy, = a,da, + a,dz,+ a,d2,+a,dx,; ete., 

we can choose the constants a,, b,, ... so that (2°1) becomes 

ds? = dy? +- dy + dyt + dye ccc ccceeseeneee vee (41). 

For, substituting for the dy’s and comparing coefficients with (2°1), we have 
only 10 equations to be satisfied by the 16 constants. There are thus many 
ways of making the reduction. Note, however, that the reduction to the sum 
of four squares of complete differentials is not in general possible for a large 
region, where the g’s have to be treated as functions, not constants. 

Consider all the events for which y, has some specified value. These will 
form a three-dimensional world. Since dy, is zero for every pair of these 
events, their mutual intervals are given by 

» Ast = dy? + dy PA Ys cesecesscccescenenseeecs (4:2). 

But this is exactly like familiar space in which the interval (which we have 
shown to be the same as the distance for space without time) is given by 

hs? = da? + dy? +2? ..cccececsccsseccescnseeees (4°3), 

where a, y, 2 are rectangular coordinates. _ 

Hence a section of the world by y,=const. will appear to us as space, and 
th» Yao Ys Will appear to us as rectangular coordinates. The coordinate-frames - 
tis Yor Ys, aNd 2, y, Z, are examples of the systems S and S’ of § 1, for which 

the intervals between corresponding pairs of mesh-corners are equal. The 
two systems are therefore exactly alike observationally; and if one appears 
to us to be a rectangular frame in space, so also must the other. One proviso 
must be noted; the coordinates 4, Ys, Ys for real events must be real, as in 

familiar space, otherwise the resemblance would be only formal. 
Granting this proviso, we have reduced the general expression to ° 

ds? = dx? + dy? + dz? + dy? -..ssessseceeceeeenees (44), 

where 2, y, z will be recognised by us as rectangular coordinates in space. 

Clearly y, must involve the time, otherwise our location of events by the four 
coordinates would be incomplete; but we must not too hastily identify it 
with the time ¢. 

" * Jt will be shown in § 36 that it is always possible to transform the coordinates so that the 

first derivatives of the g’s vanish at a selected point. We shall suppose that this preliminary 
transformation has already been made, in order that the constancy of the g’s may be a valid 
approximation through as large a region as possible round the selected point.
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I suppose that the following would be generally accepted asa satisfactory 
(pre-relativity) definition of equal time-intervals:—if we have a mechanism 
capable of cyclic motion, its cycles will measure equal durations of time 
anywhere and anywhen, provided the mechanism, its laws of behaviour, and 
all outside influences remain precisely similar. To this the relativist would 
add the condition that the mechanism (as a whole) must be at rest in the 
space-time frame considered, because it is now known that a clock in motion goes slow in comparison with a fixed clock. The non-relativist does not dis- agree in fact, though he takes a slightly different view; he regards the proviso that the mechanism must be-at rest as already included in his enunciation, because for-him. motion involves progress through the aether, which (he considers) directly affects the behaviour of the clock, and is one of those “outside influences” which have to be kept “precisely similar.” 

Since then’ it is agreed that the mechanism as a whole is to be at rest, and thé moving parts return to the same positions after a complete cycle, we shall have for the two events marking the beginning and end of the cycle 
dz, dy, dz =0, 

Accordingly (4-4) gives for this case 

ds? = dy2. 
We have’ seen in § 3 that the cycles of the mechanism in all cases correspond to equal intervals ds; hence they correspond to equal values of dy, But by the above definition of time they also correspond to equal lapses of time de; hence we must have dy, proportional to dt, and we express this proportion- ality by writing 

_ Dye =1CUb eee sescsersssececersssececes., (4°5), - where i= V—1, and c is a constant. It is, of course, possible that ¢ may be an imaginary number, but provisionally we shall suppose it real. Then (4-4) becomes 

ds) = dat dy? +d? OP ee ccccseccs... (4°6). A further discussion is necessary before it is permissible to conclude that (46) is the most general possible form for ds* in terms of ordinary space and time coordinates. If we had reduced (21) to the rather more general form ds? = da? + dy? + de? — dt? — 2cadndt — WBdydt ~Qcydedt »+(4°7), this would have agreed with (4°6) in the only two cases yet discussed, viz. (1) when dt =0, and (2) when da, dy,dz=0. To show that this more general form is inadmissible we must examine pairs of events which differ both in time and place. si. : In the preceding pre-relativity definition of ¢ our clocks had to remain stationary and were therefore of no use for comparing time at different places What did the pre-relativity physicist mean by the difference of time dt between two events at different places? I do not think that we can attach any meaning to his hazy conception of what dt signified ; but we know one
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or two ways in which he was accustomed to determine it. One method which 
he used was that of transport of chronometers. Let us examine then what 
happens when we move a clock from (a, 0, 0) at the time ¢, to another place 
(2, 0, 0) at the time &. 

We have seen that the clock, whether at rest or in motion, provided it 
remains a precisely similar mechanism, records equal intervals; hence the 
difference of the clock-readings at the beginning and end of the journey will 
be proportional to the integrated interval 

2 
US Lesssresssseceeseeeeee tesesnenees (4°81). 

te ae 1 

If the transport is made in 1 the direct line (dy = 0, dz=0), we shall have 
according to (4°7) 

— ds? = edt? + 2cadrdt — dx? 

= eat {1 +2o-3(@)t- 

Hence the difference of the clock-readings (4°81) is proportional to 

f& Qau urd I. di (a + = -5) sestevecatececsseaeasens (4-82), 

where u=dx/dt, i.e the velocity of the clock. The integral will not in general 
reduce to t — 4; so that the difference of time at the two places is not given 
correctly by the reading of the clock. Even when a=0, the moving clock 
does not record correct time. 

Now introduce the condition that the velocity w is very small, remembering 
that t,— ¢, will then become very large. Neglecting w?/c, (482) becomes 

fr és at (1 +5 2%) approximately 

= (4-4) +2 (a—m), 
The clock, if moved sufficiently slowly, will record the correct time-difference 
if, and only if,a=0. Moving it in other directions, we must have, similarly, 
B8=0, y=0. Thus (46) is the most general formula for the interval, when 
the time at different places is compared by slow transport of clocks from one 
place to another. . 

I do not know how far the reader.will be prepared to accept the condition 
that it must be possible to correlate the, times at different places by moving 
a clock from one to the other with infinitesimal velocity. The method 
employed in accurate work is to send an electromagnetic signal from one to 
the other, and we shall see in § 11 that this leads to the same formulae. We 
can scarcely consider that either of these methods of comparing time at . 
different places is'an essential part of our primitive notion of time in the 
same way that measurement at one place by a cyclic mechanism is; therefore .
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they are best regarded as conventional. Let it be understood, however, that 
although the relativity theory has formulated the convention explicitly, the 
usage of the word time-difference for the quantity fixed by this convention is 
in accordance with the long established practice in experimental physics and 
astronomy. 

Setting a=0 in (4°82), we see that the accurate formula for the clock- 
reading will be 

[oaa—we 
© (1 — w/o) (ty ) cesccasscssececsesceceeesc. (4-9) 

. for a uniform velocity wu. Thus a clock travelling with finite velocity gives 
too small a reading—the clock goes slow compared with the time-reckoning 
conventionally adopted. 

To sum up the results of this section, if we choose coordinates such that the general quadratic form reduces to 

ds? = dy,? + dy? + dy? + dy? oot eecenccccceeees (£95), 
then %, Yo, ys and y, V—1 will represent ordinary rectangular coordinates and time. If we choose coordinates for which 

ds? = dy? + dy? + dys? + dy?g+ 2ady,dy, + 2Bdy,dy, + 2ydysdy, «--(4°96), 
these coordinates also will agree with rectangular coordinates and time so far as the more primitive notions of time are concerned; but the reckoning by this formula of differences of time at different places will not agree with the reckoning adopted in physics and astronomy according to long established practice. For this reason it would only introduce confusion to admit these coordinates as a permissible Space and time system. 

We who regard all coordinate-frames as equally fictitious structures have no special interest in ruling out the more general form (4:96). It is not a question of ascribing greater significance to one frame than to another, but of discovering which frame corresponds to the space and time reckoning generally accepted and used in standard works such as the Nautical Almanac. 
with a region of the world in which the gS are constant, or approximately constant. A region having this property is called flat. The theory of this case is called the “special ” theory of relativity ; it was discussed by Einstein in 1905—some ten years before the: general theory. But it becomes much simpler when regarded as a Special case of the general theory, because it is no longer necessary to defend the conditions for its validity as being essential properties of space-time. For a given region these conditions may hold, or they may not. The special theory applies only if they hold; other cases must
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5. The Lorentz transformation. 

Make the following transformation of coordinates 

z=B(a'—ul’), yay’, z=2, t=B(t—us'c?) ......(5'1), 

" B=(1-w/ct)4, 
where w is any real constant not greater than c. 

We have by (5'1) 

da? — dt? = B? {(da’ — udt’ — c? (dt' — udz'/c)} 

= B? {(2 - =) dz"? — (c? — uv?) aes} 

= da’? — edt’, 
Hence from (4°6) ~ 

ds? = da? + dy? + dz*— edt? = dx’? + dy? + d2't—cdt? ...... (5°2). 

The accented and unaccented coordinates give the same formula for the 
interval, so that the intervals between corresponding pairs of mesh-corners 
will be equal, and therefore in all observable respects they will be alike. We 
shall recognise 2’, y’, 2’ as rectangular coordinates in space, and ¢’ as the 
associated time. We have thus arrived at another possible way of reckoning 
space and time—another fictitious space-time frame, equivalent in all its 
properties to the original one. For convenience we say that the first reckoning 
is that of an observer S and the second that of an observer S’, both observers 
being at rest in their respective spaces*. 

The constant w is easily interpreted. Since S is at rest in his own space, 
his location is given by «=const. By (5:1) this becomes, in 8”s coordinates, 
z'— ut’ = const.; that is to say, S is travelling in the x-direction with velocity u. 
Accordingly the constant u is interpreted as the velocity of S relative to S’. 

It does not follow immediately that, the velocity of S’ relative to S is 
—u; but this can be proved by algebraical solution of the equations (5:1) to 
determine 2’, 7/, 7, tv’. We find 

g=B(atut), y=y 2=2, U=B(tt+uale) ...... (5°3), 

showing that an interchange of S and 8’ merely reverses the sign of u. 
The essential property of the foregoing transformation is that it leaves 

the formula for ds? unaltered (5°2), so that the coordinate-systems which it 

connects are alike in their properties. Looking at the matter more generally, 
we have already noted that the reduction to the sum of four squares can be 
made in many ways, so that we can have 

ds? = dy? + dy2? + dys + dy? = dy,’ + dys + dys? + dy, ......(5°4). 
* This is partly a matter of nomenclature, A sentient observer can force himeelf to “recollect 

that he is moving” and so adopt a space in which he is not at rest; but he does not so readily 

adopt the time which properly corresponds; unless he uses the space-time frame in which he is 
‘at rest, he is likely to adopt a hybrid space-time which leads to inconsistencies, There is no 
‘ambiguity if the “observer” is regarded as merely an involuntary measuring apparatus, which by 
the principles of § 4 naturally partitions a space and time with respect to which it is at rest. | 

E. 2 
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The determination of the necessary connection between any two sets of 
coordinates satisfying this equation is a problem of pure mathematics; we 
can use freely the conceptions of four-dimensional geometry and imaginary 
rotations to find this connection, whether the conceptions have any physical 
significance or not. We see from (5'4) that ds is the distance between two 
points in four-dimensional Euclidean space, the coordinates (1%, ¥25 Ys, ys) and 
(1', Yes Ys, yr) being rectangular systems (real or imaginary) in that space. 
Accordingly these coordinates are related by the general transformations from 
one set of rectangular axes to another in four dimensions, viz. translations 
and rotations. Translation, or change of origin, need not detain us; nor need 
a rotation of the space-axes (y1, ¥2, Ys) leaving time unaffected. The interesting 
‘case is a rotation in which y, is involved, typified by 

n= cosoO—~y,/sin 6, y= yy’ sin 0+ y,' cos 8, 
Writing u=7e tan 6, so that 8 =cos 8, this leads to the Lorentz transforma- tion (51). 

Thus, apart from obvious trivial changes of axes, the Lorentz transforma- tions are the only ones which leave the form (4°6) unaltered. 
Historically this transformation was first obtained for the particular case of electromagnetic equations. Its more general character was pointed out by Einstein in 1905. 

6. The velocity of light. 

Consider a point moving along the a-axis whosé velocity measured by S’ is v’, so that 
, ,_ da ofa pi ttt eecce eee eseceesssneees (6°1). 

. Then by (5:1) its velocity measured by S is 

| ya tt _ 8 (de'—udt’) 
dt B(dt' —uda'/c®) 

vu 
= l—w/e by (61) te ecwcecee coeeeeeo(G6°2), 

In non-relativity kinematics we should have taken j 
v=u' —%u. 

If two points move relatively to 8’ with equal velocities in opposite directions + v' and —v’, their velocities relative to S are 

t as axiomatic that 

i 

vu nd v+u 
1—w'/e? 1 + uy’ /c2” 

‘As we should expect, these speeds are usually unequal; but there js an ex- ceptional case when v’'=c. The speeds relative to § are then also equal, both in fact being equal to c. ,
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Again it follows from (5-2) that when 

CE) +B) += 
(i) ++ -« 

Thus when the resultant velocity relative to S’ is c, the velocity relative to 
S is also c, whatever the direction. We see that the velocity c has a unique 
and very remarkable property. 

According to the older views of absolute time this result appears incredible. 
Moreover we have not yet shown that the formulae have practical significance, 
since c might be imaginary. But experiment has revealed a real velocity 
with this remarkable property, viz. 299,860 km. per sec. We shall call this 
the fundamental velocity. 

By good fortune there is an entity—light—which travels with the funda- 
mental velocity. It would be a mistake to suppose that the existence of such 
an entity is responsible for the prominence accorded to the fundamental velocity 
c in our scheme; but it is helpful in rendering it more directly accessible to 
experiment. The Michelson-Morley experiment detected no difference in the 
velocity of light in two directions at right angles. Six months later the earth’s 
orbital motion had altered the observer's velocity by 60 km. per sec., corre- 
sponding to the ‘change from S’ to S, and there was still no difference. Hence 
the velocity of light.has the distinctive property of the fundamental velocity. 

Strictly speaking the Michelson-Morley experiment did not prove directly 
that the velocity of light was constant in all directions, but that the average 
to-and-fro velocity was constant in all directions. The experiment compared 
the times of a journey “there-and-back.” If v(@) is the velocity of light in 

the direction 0, the experimental result is 
1 

ds =Q, and hence 

1 
TO ta @ Ha ~ mst = C 63) Ld ce gh oe 

v(0) v(@+m) 

for all values of 6. The constancy has been established to about 1 part in 10". 
It is-exceedingly unlikely that the first equation could hold unless 

. oS v(0) =v (8 + 7) =const. ; 

and it is fairly obvious that the existence of the second equation excludes the 
possibility altogether. However, on account of the great importance of the 
identification of the fundamental velocity with the velocity of light, we give 

a, formal proof. 
Let a ray travelling with velocity v traverse a distance F in a direction 

6, so that . 
‘dt=R/v, dxe=Roos6, dy=Rsiné.
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Let the relative velocity of S and S’ be small so that u®/c? is neglected. Then 
by (5:3 
y C2) dit'=dt+udz/c, da’ =dxr+udt, dy’ =dy. 

Writing SR, 80, Sv for the change in R, 6, v when a transformation is made 
to S’’s system, we obtain 

8 (R/v) = dt’ — dt = uh cos 6/c?, 

§(F cos 0) = da'—dz=uR/», 

§(fsin 6) = dy'—dy=0. 
Whence the values of 82, 56, 8 (1/v) are found as follows: 

, oo . bR= uh cos 6]/v, 

56 = — usin 6/v, 

8(5) =ueos6(=3). 

Here 8 (1/v) refers to a comparison of velocities in the directions @ in S's system and 6’ in S'’s system. Writing A (1/v) for a comparison when the 
direction is 8 in both systems 

s()=3@)-3 0). 
u u wsin@ d/l = 79 008 8 — cos 6 + 5 = (5) 

  

ee 
u 1 a I . = g00s O+ dusin® O55 =m 3): 

Hence 

1 1 . a 1: 1 1 «Gat aen) “HOB by (oly ag 0(0) 1 o@4m)) ~ su sin’ Ox, tama v (6) worm) 
By (6°3) the left-hand side is independent of 6, and equal to the constant C’—C. We obtain on integration - 

  

1 1 -C’-C~,. , FO) Oba a (sin? 4. log tan £6 — cos 6), 

1 1 C’-C 1. 
*r 08)" v(G+m)~ —G_*y (Sin? 4. log tan £6 — cos 6), 
It is clearly impossible that the difference of 1/v in opposite directions should be a function of 6 of this form; because the origin of @ is merely the direction of relative motion of S and 8’, which may be changed at will in different experiments, and has nothing to do with the propagation of light relative to S. Hence C’—~C=0,and y (9) =0 (6+ 7). Accordingly. by (6°3) v(@) is inde- pendent of @; and similarly v’ (9) is independent of 6, Thus the velocity of light is uniform in all directions for both observers and is therefore to be ‘identified with the fundamental velocity. oO When this proof is compared with the statement commonly (. and correctly) made that the equality of the forward and backward velocity of light cannot
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be deduced from experiment,.regard must be paid to the context. The use 
of the Michelson-Morley experiment to fill a particular gap in a generally 
deductive argument must not be confused with its use (e.g. in Space, Time 
and Gravitation) as the basis of a pure induction from experiment. Here we 
have not even used the fact that it is a second-order experiment. We have 
deduced the Lorentz transformation from the fundamental hypothesis of § 1, 
and have already introduced a conventional system of time-reckoning explained 
in § 4. The present argument shows that the convention that time is defined 
by the slow transport of chronometers is equivalent to the convention that 
the forward velocity of light is equal to the backward velocity. The proof of 
this equivalence is mainly deductive except for one hiatus—the connection 
of the propagation of light and the fundamental velocity—and for that step 
appeal is made to the Michelson-Morley experiment. 

The law of composition ‘of ‘velocities (6:2) is well illustrated by Fizeau’s 
experiment on the propagation of light along a moving stream of water. Let 
the observer S’ travel with the stream of water, and let S be a fixed observer. 

The water is at rest relatively to S’ and the velocity of the light relative to 
him will thus be the ordinary velocity of propagation in still water, viz. 
v= elu, where p is the refractive index. The velocity of the stream being w, 
—w is the velocity of S relative to 8’; hence by (6:2) the velocity v of the | 
light relative to S is 

vtw _ efptw 
=] T+w/e 1+w/pe 

=¢/.+w(1—1/p”) approximately, 

neglecting the square of w/c.: . 
Accordingly the velocity of the light is not increased by the full velocity 

of the stream in which it is propagated, but by the fraction (1 —1/p?)w. For 
water this is about 0'44w. The effect can be measured by dividing a beam 
of light into two parts which are sent in opposite directions round a circulating 

stream of water. The factor (1 —1/y*) is known as Fresnel’s convection- 
coefficient; it was confirmed experimentally by Fizeau in 1851. 

If the velocity of light zn vacuo were a constant ¢’ differing from the 
fundamental velocity c, the foregoing calculation would give for Fresnel’s 
convection-coefficient 

ec? 1 

| — out 
Thus Fizeau’s experiment provides independent evidence that the fundamental 
velocity is at least approximately the same as the velocity of light. In the most 
recent repetitions of this experiment made by Zeeman * the agreement between 
theory and observation is such that ¢’ cannot differ from ¢ by more than 1 part 
in 500. 

— 

* Amsterdam Proceedings, vol. xvi1, pp. 398 and 1240.
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7. Timelike and spacelike intervals. 

. We make a slight change of notation, the quantity hitherto denoted by 
ds? being in all subsequent formulae replaced by — ds?, so that (4:6) becomes 

ds? = dt? — da? — dy®— dz* .ocsccccscecee eeeeees (7'1). 

There is no particular advantage in this change of sign; it is made in order 
to conform to the customary notation. 

The formula may give either positive or negative values of ds?, so that the 
interval between real events may be a real or an imaginary number. We call 
real intervals timelike, and imaginary intervals spacelike. 

From (71) (y- e— (By - (sty ~ (S) 

FCT cecccsecervcncscenscacsncsccccscsesrescees (7-2), 

where v is the velocity of a point describing the track along which the interval 
lies. The interval is thus real or imaginary according as v is less than or 
greater than c. Assuming that a material particle cannot travel faster than 
light, the intervals along its track must be timelike. We ourselves are limited 
by material bodies and therefore can only have direct experience of timelike 
intervals, We are immediately aware of the passage of time without the use 
of our external senses; but we have to infer from our sense perceptions the 
existence of spacelike intervals outside us. | ; 

From any event 2, y, z, t, intervals radiate in all directions to other events; and the real and imaginary intervals are separated by the cono 

0 = c?dt? — dz? — dy? — dz’, 
which is called the null-cone. Since light travels with velocity ¢, the track of any light-pulse proceeding from the event lies on the null-cone. When the g's are not constants and the fundamental quadratic form is not reducible to (71), there is still a null-surface, given by ds=0 in (2:1), which separates the timelike and spacelike intervals. There can be little doubt that in this case also the light-tracks lie on the null-surface, but the property is perhaps scarcely self-evident, and we shall have to justify it in more detail later. The formula (6-2) for the composition of velocities in the same straight line may be written 

tanh y/¢ = tanh™ v'/e — tanh- 7 (re (7°38). 
The quantity tanh v/c has been called by Robb the rapidity corresponding to the velocity v. Thus (78) shows that relative rapidities in the same direction compound according to the simple addition-law. Since tanh-1 l=oo, the velocity of light corresponds to infinite rapidity. ‘We cannot reach infinite
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There is an essential discontinuity between speeds greater than and less 
than that of light which is illustrated by the following example. If two points 
move in the same direction with velocities ~ 

, MNHeote w=Cc—E 

respectively, their relative velocity is by (6:2) 

Uae Qe _ 2¢ 

1l—yvje 1—-(@-e/e e’ 

which tends to infinity as e is made infinitely small! If the fundamental 

velocity is exactly 300,000 km. per sec., and two points move in the same 

direction with speeds of 300,001 and 299,999 km. per sec., the speed of one 

relative to the otheris 180,000,000,000 km. per sec. The barrier at 300,000 km. 

per sec. is not to be crossed by approaching it. A particle which is aiming to 

reach a speed of 300,001 km. per sec. might naturally hope to attain its object 

by continually increasing its speed; but when it has reached 299,999 km. per 

sec., and takes stock of the position, it sees its goal very much farther off than 

when it started. 

A particle of matter is a structure whose linear extension is timelike. We 

might perhaps imagine an analogous structure ranged along a spacelike track. 

That would be an attempt to picture a particle travelling with a velocity 

greater than that of light; but since the structure would differ fundamentally 

from matter as known to us, there seems no reason to think that it would be 

recognised by us as a particle of matter, even if its existence were possible. 

For a suitably chosen observer a spacelike track can lie wholly in an instan- 

taneous space. The structure would exist along a line in space at one moment; 

at preceding and succeeding moments it would be non-existent. Such instan- 

taneous intrusions must profoundly modify the continuity of evolution from 

past to future. In default of any evidence of the existence of these spacelike 

particles we shall assume that they are impossible structures. 

8. Immediate consciousness of time. 

Our minds are immediately aware of a “flight of time” without the inter- 

vention of external senses. Presumably there are more or less cyclic processes 

occurring in the brain, which play the part of a material clock, whose indica- 

tions the mind can read. The rough measures of duration made by the internal 

time-sense are of little use for scientific purposes, and physics is accustomed 

to base time-reckoning on more precise external mechanisms. It is, however, 

desirable to examine the relation of this more primitive notion of time to the 

scheme developed in physics. , 

Much confusion has arisen from a failure to realise that time as currently 

used in physics and astronomy deviates widely from the time recognised by 

the primitive time-sense. In fact the time of which we are immediately con- 

scious is not in general physical time, but the more fundamental quantity 

which we have called interval (confined, however, to timelike intervals).
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Our time-sense is not concerned with events outside our brains; it relates 
only to the linear chain of events along our own track through the world. w e 
may learn from another observer similar information as to the time-suecession 
of events along his track. Further we have inanimate observers—clocks— 
from which we may obtain similar information as to their local time-successions. 
The combination of these linear successions along different tracks into a com- plete ordering of the events in relation to one another is a problem that requires careful analysis, and is not correctly solved by the haphazard intuitions of pre-relativity physics, Recognising that both clocks and time-sense measure ds between pairs of events along their respective tracks, we see that the problem reduces to that which we have already been studying, viz. to pass from a description in terms of intervals between pairs of events toa description in terms of coordinates, 

The external events which we sce appear to fall into our own local time-succession; but in reality it is not the events themselves, but the sense-impressions to which they indirectly give rise, which take place in the time-succession of our consciousness. The popular outlook does not trouble to discriminate between the external events themselves and the events constituted by their light-impressions on our brains; and hence events throughout the 

So as to include external events, and are world-wide ; and the enduring universe is supposed to consist of a succession of instantaneous states. This crude view was disproved in 1675 by Rémer’s celebrated discussion of the eclipses of Jupiter's satellites; and we are no longer permitted to locate external events in the instant of our visual perception of them. The whole foundation of the idea of world-wide instants was destroyed 250 years ago, and it seems strange that it should still survive in current physics. But, as so often happens, the theory was patched up although its original raison @étre had vanished. Ob- sessed with the idea that the external events had to be put somehow into the - instants of our private’ consciousness, the physicist succeeded in removing the pressing difficulties by placing them not in the instant of visual perception but in a suitable preceding instant, Physics borrowed the idea of world-wide instants from the rejected theory, and constructed mathematical continuations of the instants in the consciousness of the observer, making’in this way time- partitions throughout the four-dimensional world. We need have no quarrel with this very useful construction which gives physical time. We only insist that its artificial nature should be recognised, and that the original demand for a world-wide time arose through a mistake. We should probably have had to invent universal time-partitions in any case in order to obtain a com- plete mesh-system; but it might have saved confusion if we had arrived at it as a deliberate invention instead of an inherited misconception, If it is found 
. that physical time has properties which would ordinarily be regarded as con-
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trary to common sense, no surprise need be felt; this highly technical construct 
of physics is not to be confounded with the time of common sense. It is im- 
portant for us to discover the exact properties of physical time; but those 
properties were put into it by the astronomers who invented it. 

9. The “3+1 dimensional” world. 

. The constant c? in (7-1) is positive according to experiments made. in 
regions of the world accessible to us. The 3 minus signs with 1 plus sign 
particularise the world in a way which we could scarcely have predicted from 
first principles. H. Weyl expresses this specialisation by saying that the world 
is 3+1 dimensional. Some entertainment may be derived by considering the 
properties of a 242 ora 4+0 dimensional world. A more serious question 
is, Can the world change its type? Is it possible that in making the reduction 
of (2°1) to the sum or difference of squares for some region remote in space or 
time, we niight have 4 minus signs? I think not; because if the region exists 
it must be separated from our 3+-1 dimensional region by some boundary. 
On one side of the boundary we have 

ds? = — dx? — dy— dz + cide, | 

ds? = — dat — dy? —dz*—c?dt’. 
The transition can only occur through a boundary where 

ds? = — da? — dy? — dz? + 0d#?, 

so that the fundamental velocity is zero. Nothing can move at the boundary, 
and no influence can pass from one side to another. The supposed ‘region 
beyond is thus not in any spatio-temporal relation to our own universe—which 
is a somewhat pedantic way of saying that it does not exist. 

- This barrier is more formidable than that which stops the passage of light 
round the world in de Sitter’s spherical space-time (Space, Time and Gravi- 
tation, p. 160). The latter stoppage was relative to the space and time of a 
distant observer; but everything went on normally with respect to the space 
and time of an observer at the region itself. But here we are contemplating 
a barrier which does not recede as it is approached. 

The passage to a 2+ 2 dimensional world would occur through a transition 
region where 

and on the other side 

ds? = — dx? — dy? + 0d2? + cde, 

Space here reduces to two dimensions, but there does not appear to be any 

barrier. The conditions on the far side, where time becomes two-dimensional, 

defy imagination. 

10. The FitzGerald contraction. 

We shall now consider some of the consequences deducible from the 
Lorentz transformation. 

The first equation of (5'3) may be written 

2/8 =x+ ut,
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which shows that S, besides making the allowance ut for the motion of his 
origin, divides by all lengths in the «direction measured by S’. On the 
other hand :the equation y’=y shows that S accepts S”s measures in dirce- 
tions transverse to their relative motion. Let S’ take his standard metre 
(at rest relative to him, and therefore moving relative to S) and point it first 
in the transverse direction y’ and then in the longitudinal direction 2’, For 
S’ its length is 1 metre in each position, since it is his standard; for S the 
length is 1 metre in the transverse position and 1/8 metres in the longitudinal 
position. Thus S finds that a moving rod contracts when turned from the 
transverse to the longitudinal position. 

‘The question remains, How does the length of this moving rod compare with the length of a similarly constituted rod at rest relative to S? The answer is that the transverse dimensions are the same whilst the longitudinal dimensions are contracted. We can prove this by a reductio ad absurdum. For suppose that a rod moving transversely were longer than a similar rod at rest. Take two similar transverse rods A and A’ at rest relatively to S and S’ respectively. Then S must regard A’ as the longer, since it is moving relatively to him; and S’ must regard A as the longer, since it is moving relatively to him. But this is impossible since, according to the equation y=y', S and 8’ agree as to transverse measures, 
We see that the Lorentz transformation (5°1) requires that (x, y, 2, t) and (2, y’, 2, #) should be measured with standards of identical material constitu- tion, but moving respectively with S and S’. This was really implicit in our deduction of the transformation, because the property of the two systems is that they give the same formula (5-2) for the interval; and the test of complete similarity of the standards is equality of all corresponding intervals occurring in them. 
The fourth equation of (5'1) is 

; t= 8 (t’ — us'/c?). 
Consider a clock recording the time 2’, which accordingly is at rest in Ss system (a’ = const.) Then for any time-lapse by this clock, we have 

bt = BSt, 
since éa’=0. That is to say, S does not accept the time as recorded by this moving clock, but multiplies its readings by 8, as though the clock were going slow. This agrees with the result already found in (4°9). 

“configuration of events” constituting the four-dimensional structure which we call a rod is unaltered; all that happens is that the observer's Space and time partitions cross it in a different direction ‘
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Further we make no prediction as to what would happen to the rod set 
in motion in an actual experiment. There may or may not be an absolute 
change of the configuration according to the circumstances by which it is set 
in motion. Our results apply to the case in which the rod after being set in 
motion is (according to all experimental tests) found to be similar to the rod 
in its original state of rest*. 

When a number of phenomena are connected together it becomes some- 
what arbitrary to decide which is to be regarded as the explanation of the 
others. To many it will seem easier to regard the strange property of 
the fundamental velocity as explained by these differences of behaviour of 
the observers’ clocks and scales. They would say that the observers arrive 
at the same value of the velocity of light because they omit the corrections 
which would ‘allow for the different behaviour of their measuring-appliances. 
That is the relative point of view, in which the relative quantities, length, 
time, ete., are taken as fundamental. From the absolute point of view, which 
has regard to intervals-only, the standards of the two observers are equal and 
behave similarly; the so-called explanations of the invariance of the velocity 
of light only lead us away from the root of the matter. 

Moreover, the recognition of the FitzGerald contraction does not enable 
us to avoid paradox. From (5°3) we found that S”s longitudinal measuring- 
rods were contracted relatively to those of S. From (5:1) we can show similarly 
that S’s rods are contracted relatively to those of S’. There is complete 
reciprocity between S and 8’. This paradox 4 is discussed more > fully i in Space, 
Time and Gravitation, p. 55. 

11. Simultaneity at different places. 

It will be seen from the fourth equation of (51), viz. 

t=B (t —us'/c’), 
that events at different places which ite simultaneous for S’ are not in general 
simultaneous for S. In fact, if di’ = 

‘ta Bude’ fe ce eecesteneeeveoeesenseeaes (11-1). 

It is of some interest to examine in detail how this difference of reckoning 
of simultaneity. arises. It has been explained in § 4 that by convention the 
time at two places is compared by transporting a clock from one to the other 
with infinitesimal velocity. Our formulae are based on this convention; and, 
of course, (11°1) will only be true if the convention is adhered to. The fact 
that infinitesimal velocity relative to S’ is.not the same as infinitesimal 
velocity relative to S, leaves room for the discrepancy of reckoning of simul- 
taneity to creep in. Consider two points A and B at rest relative to 8’, and 
distant 2’ apart. Take a clock at A and move it gently to B by giving it an 

* It may be impossible to change the motion of a rod without causing a rise of temperature. 
Our conelusions will then not apply until the temperature has fallen again, i.e. until the tempera- 
ture-test shows that the rod is precisely similar to the rod before the change of motion.
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infinitesimal velocity du’ for.a time x’/dw’. ‘Owing to the motion, the clock 
will by (4:9) be retarded in the ratio (1 — du’/c?)~ 4; this continues fora time 
z'/du’ and the total loss is thus 

oO {1-(1— du’*/ct)3} a! /du’, 
which tends to zero when du’ is infinitely small. S’ may accordingly accept 
the result of the comparison without applying any correction for the motion 
of the clock. 

Now consider $s view of this experiment. For him the clock had already 
a velocity wu, and accordingly the time indicated by the clock is only (1 — u?/c?)} 
of the true time for S. By differentiation, an additional velocity du* causes 
a supplementary loss 

(1 — u2/e) 74 udufc? clock secondS ......s..ce00. (11:2 
per true second. Owing to the FitzGerald contraction of the length AB, the distance to be travelled is x’/8, and the journey will occupy a time 

x'/Bdu true’seconds ....... sas eeesceccecsees (11°3). Multiplying (11-2) and (11:3), the total loss due to the journey is 
uz:‘/e? clock seconds, 

or _Busx'/c true seconds for S ............. saseeees (11-4). 
Thus, whilst S’ accepts the uncorrected result of the comparison, S has to apply a correction Bus'/c for the disturbance of the chronometer through transport. This is precisely the difference of their teckonings of simultancity given by (11°1). 
In practice an accurate comparison of time at different places is made, not by transporting chronometers, but by electromagnetic signals—usually wireless time-signals for places on the earth, and light-signals for places in the solar system or stellar universe. Take two clocks at A and B, respectively. Let a signal leave A at clock-time ¢,, reach B at time tz by the clock at B, and be reflected to reach A again at time t,. ‘The observer S’, who is at rest relatively to the clocks, will conclude that the instant ty at -B was simul- taneous with the instant 4 (t, + é&) at A, because he assumes that the forward velocity of light is equal to the backward velocity. But for S the two clocks are moving with velocity u; therefore he calculates that the outward Journey will occupy a time 2/(c—u) and the homeward journey a time z/(¢+u). Now 2 z(c+u) Bw, Cu ma = +t), 

ax _2(c—u) Px 
(O+Uu oa = @ (C— 4). Thus .the instant tg of arrival at B must be taken as Mxu]c? later than the half-way instant $(f,+4). This correction applied by S, but not by 8’, agrees with (11'4) when we remember that owing to the F itzGerald contraction c= x'/B, 

* Note that du will not be equal to du’, 
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Thus the same ‘difference in the reckoning of simultaneity by S and 9’ 
" appears whether we use the method of. transport of clocks or of light-signals. 

In either case a convention is introduced as to the reckoning of time-differences 
at different places; this convention takes in the two methods the alternative 
forms— 

(1) A clock moved with infinitesimal velocity from one place to another - 
continues to read the correct time at its new station, or ° , 

(2) The forward velocity of light along any line is equal to the backward 
velocity *. oo . 
Neither statement is by itself a statement of observable fact, nor does it 
refer to any intrinsic property of clocks or of light; it is simply an announce- 
ment of the rule by which we -propose to extend fictitious time-partitions 
through the world. But the mutual agreement of the two statements is a fact 
which could be tested by observation, though owing to the obvious practical 
difficulties it has not been possible to verify it directly. We have here given 
a theoretical proof of the agreement, depending on the truth of the funda- 
mental axiom of § 1. 

The two alternative forms of the convention are closely connected. In 
general, in any system of time-reckoning, a change du in the velocity of a 
clock involves a change of rate proportional to du, but there is a certain 
turning-point for which the change of rate is proportional to du’. In adopting 
a time-reckoning such that this stationary point corresponds to his own 
motion, the observer is imposing a symmetry on space and time with respect 
to himself, which may be compared with the symmetry imposed in assuming 
a constant velocity of light in all directions. Analytically we imposed the 
same general symmetry by adopting (4'6) instead of (4°7) as the form for ds? 
making our space-time reckoning symmetrical with respect to the interval 
and therefore with respect to all observational criteria. 

12. Momentum and mass. 

Besides possessing extension in space and time, matter possesses inertia. 
We shall show in due course that inertia, like extension, is expressible in terms 
of the interval relation; but that is a development belonging to a later stage 
of our theory. Meanwhile we give an elementary treatment based on the 
empirical laws of conservation of momentum and energy rather than on any 
deep-seated theory of the nature of inertia. 

For the discussion of space and time we have made use of certain ideal 
apparatus which can only be imperfectly realised in practice—rigid scales and 

* The chief case in which we require for practical purposes an accurate convention as to the 

reckoning of time at places distant from the earth, is in calculating the elements and mean 
places of planets and comets. In these computations the velocity of light in any direction is taken 
to be 300,000 km. per sec., an assumption which rests on the convention (2). All experimental 
methods of measuring the velocity of light determine only an average to-and-fro velocity.
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perfect cyclic mechanisms or clocks, which always remain similar configura- 
tions from the absolute point of view. Similarly for the discussion of inertia 
we require some ideal material object, say a perfectly elastic billiard ball, whose 
condition as regards inertial properties remains constant from an absolute 
point of view. The difficulty that actual billiard balls are not perfectly clastic 
must be surmounted in the’same way as the difficulty that actual scales are 
not rigid. To the ideal billiard ball we can affix a constant number, called 
the invariant mass*, which will denote its absolute inertial properties; and 
this number is supposed to remain unaltered throughout the vicissitudes of 
its history, or, if temporarily disturbed during a collision, is restored at the 
times when we have to examine the state of the body. 

‘With the customary definition of momentum, the components 
dx dy dz . | | Me, Ma, MG Se beeececncceseseonerecs (12:1) 

cannot satisfy a general law of conservation of momentum unless the mass MV 
is allowed to vary with the velocity. But with the slightly modified definition 

a: 4 | moe, mi, mE asses Lesseveseeseass (12-2) 
the law of conservation can be satisfied simultaneously in all space-time 
systems, m being an invariant number. This was shown in Space, Time and : Gravitation, p. 142. . 

Comparing (12'1) and (12°2), we have 

dt DL 1 seseseeseeseesrecetsasseen (12'3). 
We call m the invariant mass, and Af the relative mass, or simply the mass. ' The term “invariant” signifies unchanged for any transformation of coordinates, and, in particular, the same for all observers; constancy during the life-history of the body is an additional property of m attributed to our ideal billiard balls, but not assumed to be true for matter in general. _ Choosing units of length and time so that the velocity of light is unity, we have by (7-2) 

Hence by (12:3) 
; : . M=m(1- v*) -4 

The mass increases with the velocity by the same factor as that which gives the FitzGerald contraction; and when v=0, Mf=m. The invariant mass is thus equal to the mass at rest, 
It is natural to extend (122) by adding a fourth component, thus 

dz dy dz dt mS? mas? ma? ms Oe ae cee even ssence (12°5). 

* Or proper-mass. 
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By (12:3) the fourth component is equal to Jf. Thus the momenta and mass 
(relative mass) form together a symmetrical expression, the momenta, being 
space-components, and the mass the time-component. We shall see later that 
the expression (12'5) constitutes a vector, and the laws of conservation of 
momentum and mass assert the conservation of this vector. 

The following is an analytical proof of the law of variation of mass with 
velocity directly from the principle of conservation of mass and momentum. 
Let Mf,, Jf’ be the mass of a body as measured by S and 3’ respectively, 
v1, %' being its velocity in the x-direction. Writing 

Bi=(1—v8/c)-4, BY’ = (1—,3/c)-4, B= (1—wer)~3, 
we can easily verify from (6:2) that —— 

By = BBY (0) — UL) secesscccesseecetseseees (12°6). | 
Let a number of such particles be moving in a straight line subject to the 

conservation of mass and momentum as measured by 9’, viz. 

SAL! and =M'v/ are conserved 
Since @ and u are constants it follows that . 

= JLB (uv! —u) is conserved. 
Therefore by (12°6) 

ZAL’Byu,/By is conserved .......csecceeeees (12°71). 
But since momentum must also be conserved for the observer S . 

DAGY, is conserved .......cccscseseseeee (12°72). 
The results (12°71) and (12-72) will agree if 

. d Br = Sf'/By, . 

and it is easy to see that there can be no other general solution. Hence for 
different values of v,, MM, is proportional to £,, or 

Af =m (1—v*/e?)~ 4, 
where m is a constant for the body. ~ . 

It requires a greater impulse to produce a given change of velocity dv in 
the original direction of motion than to produce an equal change Sw at right 
angles to it. For the momenta in the two directions are initially 

mu (1 - vfct)3, 0, 

and after a change dv, Sw, they become 

m (v + $v) [1 — {(v + Sv)? + (8w)}/ee]-3,° mdw [1 — {(u + du)? + (Sw) /o7] 74, 

Hence to the first order in 8v, Sw the changes of momentum are 

. m (1—vfc)#8v, m(1—v*/c2)-4 Su, 

or Mp?su, Mdw, 

where 8 is the FitzGerald factor for velocity v The coefficient 16? was 
formerly called the longitudinal mass, M being the transverse mass; but the 
longitudinal mass is’ of no particular importance in the general theory, and 
the term is dropping out of use. ,
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13. Energy. 

_ When the units are such that c=1, we have 

M =m (1 —2%)74 
=m-+4mv? approximately ..........c0.c000 (13°1), 

if the speed is small compared with the velocity of light. The second term is 
' the kinetic energy, so that the change of mass is the same as the change of 
energy, when the velocity alters. This suggests the identification of mass with 
energy. It may be recalled that in mechanics the total energy of a system 
is left vague to the extent of an arbitrary additive constant, since only changes 
of energy are defined. In identifying energy with mass we fix the additive constant m for each body, and m may be regarded as the internal energy of constitution of the body. , 

The approximation used in (13-1) does not invalidate the argument. Consider two ideal billiard balls colliding. The conservation of mass (relative 
mass) states that 

, =m (1 —v*)~3 is unaltered, 
The conservation of energy states that 

=m (1 + 40%) .is unaltered, 
But if both statements were exactly true we should have two equations determining unique values of the speeds of the two balls; so that these speeds could not be altered by the collision, The two laws are not independent, but one is an approximation to the other. The first is the accurate law since it is independent of the space-time frame of reference. Accordingly the expression 2mv* for the kinetic energy in elementary mechanics is only an approximation in which terms in v‘, ete, are neglected. 

When the units of length and time are not restricted by the condition c=1, the relation between the mass Jf and the energy Z is 
MH TO ieicscccscessccoececcecs, (13:2), Thus the energy corresponding to a gram is 9.10” ergs. This does not affect the identity of mass and energy—that both are measures of the same world-condition. A world-condition can be examined by different kinds of experimental tests, and the units gram and erg are associated with different tests of the mass-energy condition. But when once the measure has been made it is of no consequence to us which of the experimental methods was chosen, and grams or ergs can be used indiscriminately as the unit of mass, In fact, measures made by energy-tests and by mass-tests are convertible like measures made with a yard-rule and a metre-rule. The principle of conservation of mass has thus become merged in the principle of conservation of energy. But there is another independent pheno- menon which perhaps corresponds more nearly to the original idea of Lavoisier when he enunciated the law of conservation of matter, I refer to the per- 
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manence of invariant mass attributed to our ideal billiard balls but not 
supposed to be a general property of matter. The conservation of m is an 
accidental property like rigidity ; the conservation of Af is an invariable law 
of nature. 

When radiant heat falls on a billiard ball so that its temperature rises, 
the increased energy of motion of the molecules causes an increase of mass M. The invariant mass m also increases since it is equal to Af for a body at rest. 
There is no violation of the conservation of A, because the radiant heat has 
mass J which it transfers to the ball; but we shall show later that the 
electromagnetic waves have ‘no invariant mass, and the addition to m is 
created out of nothing. Thus invariant mass is not conserved in general. 

To some extent we can avoid this failure by taking the microscopic point 
of view. The billiard ball can be analysed into a very large number of con- 
stituents—electrons and protons—each of which is believed to preserve the 
same invariant mass for life. But the invariant mass of the billiard ball is 
not exactly equal to the sum of the invariant masses of its constituents*. 
The permanence and permanent similarity of all electrons seems to be the 
modern equivalent of Lavoisier’s “conservation of matter.” It is still uncertain 
whether it expresses a universal law of nature; and we are willing to con- 
template the possibility that occasionally a positive ‘and negative electron 
may coalesce and annul one another. In that case the mass M would pass 
into the electromagnetic waves generated by the catastrophe, whereas the 
invariant mass m would disappear altogether. Again if ever we are able to 
synthesise helium out of hydrogen, 08 per cent. of the invariant mass will 
be annihilated, whilst the corresponding proportion of relative mass will be 
liberated as radiant energy. . : 

It will thus be seen that although in the special problems considered the 
quantity m is usually supposed to be permanent, its conservation belongs to 
an altogether different order of ideas from the universal conservation of AL 

14. Density and temperature. 

Consider a volume of space delimited in some invariant way, eg. the 
content of a material box. The counting of a number of discrete particles 
continually within (i.e. moving with) the box is an absolute operation ; let 
the absolute number be V. The volume V of the box will depend on the 
space-reckoning, being decreased in the ratio 8 for an observer moving 
relatively to the box and particles, owing to the FitzGerald contraction of one 
of the dimensions of the box. Accordingly the particle-density «= N/V 
satisfies 

, 

F HOD iccrececerscccsescescusterccees (141), 

* This is because the invariant mass of each electron is its relative mass referred to axes 
moving with it; the invariant muss of the billiard ball is the relative mass referred to axes at rest 
in the billiard ball as a whole, 

E. : 3
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where o’ is the particle-density for an observer in relative motion, and o@ the 
particle-density for an observer at rest relative to the particles, 

It follows that the mass-density p obeys the equation 

P = PB? ..ccevccecccccsscseceescossecaees (142), 
since the mass of each particle is increased for the moving observer in the 
ratio B. 

Quantities referred to the space-time system of an observer moving with 
the body considered are often distinguished by the prefix proper- (German, 
Ligen-), e.g. proper-length, proper-volume, proper-density, proper-mass = in- 
variant mass, 

The transformation of temperature for a moving observer does not often 
concern us. In general the word obviously means proper-temperature, and 
the motion of the observer does not enter into consideration. In thermometry 
and in the theory of gases it is essential to take a standard with respect to 
which the matter is at rest on the average, since the indication of a ther- 
mometer moving rapidly through a fluid is of no practical interest. But 
thermodynamical temperature is defined by 

AS HAMIL viececccessccececsececsecesce. (143), 
where dS is the change of entropy for a change of energy dJf. The tempera- 
ture L defined by this equation will depend on the observer's frame of 
reference. Entropy is clearly meant to be an invariant, since it depends on the probability of the statistical state of the system compared with other 
states which might exist. Hence 7 must be altered by motion in the same 
way as dM, that is to say 

. PH BT vices. oe een eececeessens (14-4), 
But it would be useless to apply such a transformation to the adiabatic gas- equation 

. T= kpy>, 

for, in that case, T is evidently intended to signify the proper-temperature and p the proper-density. 
In general it is unprofitable to apply the Lorentz transformation to the constitutive equations of a material medium and to coefficients occurring in them (permeability, specific inductive capacity, elasticity, velocity of sound) Such equations naturally take a simpler and more significant form for axes moving with the matter. The transformation to moving axes introduces oat complications without any evident advantages, and is of little interest except as an analytical exercise. wt 
15. General transformations of coordinates, 
We obtain a transformation of coordinates by taking new coordinates ‘ ‘ é . 

. 2, Zz, X3', x which are any four functions of the old coordinates z,, x 1s “gy Conversely, x, 2, #5, 2, are functions of Xy, Xe, aL 
, , = &3, @. It is assumed that
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multiple values are excluded, at least in the region considered, so that values 
of (a, #2, #3, 2) and (a, x’, x3, «{) correspond one to one. 

If 7 hy =f, (ay, ay’, 23, @/)5 2, = fala, Xa’, Dy, x); ete, 2 ’ 

dz, = , dey + he oh, - da, +B day + oh dard ; ete. ......(15'L), 
au . 

or it may be written simply, 

do, = 3 dey (+ 3 dos (+ des +55 dol; ete ee (152), 

Substituting from (15:2) in (2°1) we see that ds? will be a homogeneous 
quadratic function of the differentials of the new coordinates; and the new 
coefficients gy’, gu’, etc. could be written down in terms of the old, if desired. 

For an example consider the usual transformation to axes revolving with 
constant angular velocity «, viz. 

&@ =a, cos wx, — a, sin wa 

=a, sin wx, +a, cos wx, . Y= By SID Wy Ly COS ON asaees (15°3). 
, 

‘t= ay 

Hence . 

da = dx cos wx, — dx sin one +o (—2a sin wx, — a,’ cos wx,) dx, 

dy = da sin wa, + dat’ cos wx, + @ (a cos wx, — x3 Sin wa, ‘\da,, 

dz = da,” . 
dt =dx{. 

Taking units of space and time so that ¢= 1, we have for our original fixed 

coordinates by (771) 
ds? = — dz? — dy? — dz? + dit 

Hence, substituting the values found above, 

ds? = — da,'? ~ day? — dag? + {1 — w* (2 + ay) day? 

+ 2x, da, dal ~2wx dite dx ...... (15°4). 

Remembering that all observational differences of coordinate-systems must 

arise via the interval, this formula mustcomprise everything which distinguishes 

the rotating system from a fixed system of coordinates. 

In the transformation (15'3) we have paid no attention to any contraction 

of the standards of length or retardation of clocks due to motion with the 

rotating axes. The formulae of transformation are those of elementary 

kinematics, so that 2,', 27, %', #7, are quite strictly the coordinates used in 

the ordinary theory of rotating axes. But it may be suggested that elementary 

kinematics is now seen to bé‘rather crude, and that it would be worth while 

to touch up the formulae (15'3) so as to take account of these small changes 

of the standards, A. little consideration shows that the suggestion is im- 
3—2
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practicable. It was shown in § 4 that if a’, xy, 2,', 2/ represent rectangular 
coordinates and time as partitioned by direct readings of scales and clocks, then 

ds? = — dax,'* — da? — day2 + dag? .....005 seeeeee (15-45), 
so that coordinates which give any other formula for the interval cannot 
represent the immediate indications of scales and clocks. As shown at the 
end of § 5, the only transformations which give (15°45) are Lorentz trans- 
formations. If we wish to make a transformation of a more general kind, such 
as that of (15°3), we must necessarily abandon the association of the coordinate- 
system with uncorrected scale and clock readings. It is useless to try to 
“improve” the transformation to rotating axes, because the supposed im- 
provement could only lead us back to a coordinate-system similar to the fixed 
axes with which we started. 

The inappropriateness of rotating axes to scale and clock measurements 
can be regarded from a physical point of view. We cannot keep a scale or 
clock at rest in the rotating system unless we constrain it, ic. subject it to 
molecular bombardment—an “ outside influence” whose effect on the measure- 
ments must not be ignored. 

In the a, y, z, t system of coordinates the scale and clock are the natural 
equipment for exploration. In other systems they will, if unconstrained, con- 
tinue to measure ds; but the reading of ds is no longer related in a simple 
way to the differences of coordinates which we wish to determine; it depends 
on the more complicated calculations involved in (21). The scale and clock 
to some extent lose their pre-eminence, and since they are rather elaborate 
appliances it may be better to refer to some simpler means of exploration. 
We consider then two simpler test-objects—the moving particle and the 
light-pulse, 

In ordinary rectangular coordinates and time x, y, 2 t an undisturbed particle moves with uniform velocity, so that its track is given by the equations 

zc=a+t bt, ysctd, z=et+ft wc. (15°5), ie. the equations of a straight line in four dimensions, By substituting from (15°3) we could find the equations of the track in rotating coordinates; or by substituting from (15:2) we could obtain the differential equations for any desired coordinates. But there is another way of proceeding. The differential equations of the track may be written 

@a dy dz dit | 7 ck (15:6), 
which on integration, having regard to the condition (7-1), give equations (15:5). The equations (15°6) are comprised in the single statement 

/ ds is stationary ...........cccecsecseesss, (157 
for all arbitrary small variations of the track which vanish at the initial and final limits—a well-known property of the straight line.
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In arriving at (15-7) we use freely the geometry of the a, y, z,¢ system 
given by (7-1); but the final result does not allude to coordinates at all, and 
must be unaltered whatever system of coordinates we are using. To obtain’ 
explicit equations for the track in any desired system of coordinates, we 
substitute in (15:7) the appropriate expression (2°1) for ds and apply the 
calculus of variations. The actual analysis will be given in § 28. 

The track of a light-pulse, being a straight line in four dimensions, will 
also satisfy (15°7); but the light-pulse has the special velocity ¢ which gives 
the additional condition obtained in § 7, viz. 

ds =0 ..ssecceee ce eeaeceseenseaeseees +(15°8). 

Here again there is no reference to any coordinates in the final result. 
We have thus obtained equations (15°7) and (15°8) for the behaviour of 

the moving particle and light-pulse which must hold good whatever the 
coordinate-system chosen. The indications of our two new test-bodies are 
connected with the interval, just as in § 3 the indications of the scale and 
clock were connected with the interval. It should be noticed however that 
whereas the use of the older test-bodies depends only on the truth of the 
fundamental axiom, the use of the new test-bodies depends on the truth of the 
empirical laws of motion and of light-propagation. In a deductive theory this 
appeal to empirical laws is a blemish which we must seek to remove later. 

16. Fields of force. 

Suppose that an observer has chosen a definite system of space-coordinates 
and of time-reckoning (2, 22, 2, 2) and that the geometry of these is given by 

ds? = gy Ary +- Jogo? + 00 + 2rd, Mag + ee crvveeeer (16'1). 

Let him be under the mistaken impression that the geometry is 
ds? = — day? — dx? — dag + da? .....0ceeeeeee0ee(16'2), 

that being the geometry with which he is most familiar in pure mathematics. 
We use ds, to distinguish his mistaken value of the interval. Since intervals 
can be compared by experimental methods, he ought soon to discover that his 
ds, cannot be reconciled with observational results, and so realise his mistake. 
But the mind does not so readily get rid of an obsession. It is more likely 
that our observer will continue in his opinion, and attribute the discrepancy 
of the observations to some influence which is present and affects the behaviour 
of his test-bodies. He will, so to speak, introduce a supernatural agency 
which he can blame for the consequences of his mistake. Let us examine 
what name he would apply to this agency. 

Of the four test-bodies considered the moving particle is in general the 
most sensitive to small changes of geometry, and it would be by this test that 
the observer would first discover ‘discrepancies. The path laid down for it by 
our observer is 

/ ds, is stationary,
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Le. a straight line in the coordinates (2, x, 23, x,). The particle, of course, 
pays no heed to this, and moves in the different track 

/ ds is stationary. 

Although apparently undisturbed it deviates from “uniform motion in a 
straight line.” The name given to any agency which causes deviation from 
uniform motion ina straight line is force according to the Newtonian definition 
of force. Hence the agency invoked through our observer's mistake is described 
as a “field of force.” 

. The field.of. force.is.not.always introduced by inadvertence as in the fore- 
going illustration. It is sometimes introduced deliberately by the mathema- 
tician, e.g. when he introduces the centrifugal force. There would be little advantage and many disadvantages in banishing the phrase “field of force” from our vocabulary. - We shall therefore regularise the procedure which our observer has adopted. We call (16:2) the abstract geometry of the system of coordinates (a, ©, 23, #3); it may be chosen arbitrarily by the observer. The natural geometry is (16-1). 
A field of force represents the discrepancy between the natural geometry of @ coordinate-system and the-abstract geometry arbitrarily ascribed to it. 
‘A field of force thus arises from an attitude of mind. If we do not take our coordinate-system to be something different from that which it really is, there-is no field of force. If we do not regard our rotating axes as though they were non-rotating, there is no centrifugal force. 
Coordinates for which the natural geometry is 

ds? = — dx? — dx? — da? + dx2 
are called Galilean coordinates. They are the same as those we have hitherto called ordinary rectangular coordinates and time (the velocity of light being unity). Since this geometry is familiar to us, and enters largely into current conceptions of space, time and mechanics, we usually choose Galilean geometry when we have to ascribe an abstract geometry. Or we may use slight modifi- cations of it, e.g. substitute polar for rectangular coordinates, __ It has been shown in § 4 that when the g's are constants, coordinates can be chosen so that Galilean geometry is actually the natural geometry. There is then no need to introduce a field of force in order to enjoy our accustomed outlook ; and if we deliberately choose non-Galilean coordinates and attribute to them abstract Galilean geometry, we recognise the artificial character of the field of force introduced to compensate the discrepancy. But in the more general case it is not possible to make the reduction of § 4 accurately through- out the region explored by our experiments; and no Galilean coordinates exist. In that case it has been usual to select some syster
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It should be noticed that the rectangular coordinates and time in current 
use can scarcely be regarded as a close‘approximation to the Galilean system, 
since the powerful force of terrestrial gravitation is needed to compensate 
the error. | 

The naming of coordinates (e.g. time) usually follows the abstract geometry 
attributed to the system. In general the natural geometry is of some compli- 
cated kind for which no detailed nomenclature is recognised. Thus when we 
call a coordinate ¢ the “time,” we may either mean that it fulfils the 
observational conditions discussed in § 4, or we may mean that any departure 
from those conditions will be ascribed to the interference of a field of force. 
In the latter case “time” is an arbitrary name, useful because it fixes a 

consequential nomenclature of velocity, acceleration, ete. 
To take a special example, an observer at a station on the earth has found 

a particular set of coordinates a, 2, £5, 2, best suited to his needs. He calls 

them z, y, z, ¢ in the belief that they are actually rectangular coordinates and 

time, and his terminology—straight line, circle, density, uniform velocity, ete.— 

follows from this identification. But, as shown in § 4, this nomenclature can 
only agree with the measures made by clocks and scales provided (16°2) is 
satisfied ; and if (16-2) is satisfied, the tracks of undisturbed particles must be 
straight lines. Experiment immediately shows that this is not the case; the 
tracks of undisturbed particles are parabolas. But instead of accepting the 

- verdict of experiment and admitting that 2, 2, #3, 7, are not what he sup- 

posed they were, our observer introduces a field of force to explain why his 
test is not fulfilled. A certain part of this field of force might have been 
avoided if he had taken originally a different set of coordinates (not rotating 
with the earth); and in so far as the field of force arises on this account it is 
generally recognised that it is a mathematical fiction—the centrifugal force. 

But there is a residuum which cannot be got rid of by any choice of co- 

ordinates; there exists no extensive coordinate-system having the simple 

properties which were ascribed to 2, y, z,¢. The intrinsic nature of space- 

time near the earth is not of the kind which admits coordinates with Galilean 

geometry. This irreducible field of force constitutes the field of terrestrial 

gravitation. The statement that space-time round the earth is “curved ”"— 

that is to say, that it is not of the kind which admits Galilean coordinates— 

is not an hypothesis; it is an equivalent expression of the ouserved fact that 

an irreducible field of force is present, having regard to the Newtonian 

definition of force. It is this fact of observation which demands the intro- 

duction of non-Galilean space-time and non-Euclidean space into the theory. 

17. The Principle of Equivalence. 

In § 15 we have stated the laws of motion of undisturbed material particles 

and of light-pulses in a form independent of the coordinates chosen. Since 

a great deal will depend upon the truth of these laws it is desirable to
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consider what justification there is for believing them to be both accurate 
and universal, Three courses are open: 

(2) It will be shown in Chapters IV and VI that these laws follow 
rigorously from a more fundamental discussion of the nature of matter and 
of electromagnetic fields; that is to say, the hypotheses underlying them may 
be pushed a stage further back. 

(6) The track of a moving particle or light-pulse under specified initial 
conditions is unique, and it does not seem to be possible to specify any 
unique tracks in terms of intervals only other than those given by equations 
(15-7) and (15°8). 

(c) We may arrive at these laws by induction from experiment. 
If we rely solely on experimental evidence we cannot claim exactness for the laws. It goes without saying that there always remains a possibility of small amendments of the laws too slight to affect any observational tests yet tried. Belief in the perfect accuracy of (15°7) and (15°8) can only be justified on the theoretical grounds (a) or (b). But the more important consideration is the universality, rather than the accuracy, of the experimental laws; we have to guard against a spurious generalisation extended to conditions intrinsically dissimilar from those for which the laws have been established observationally, 
We derived (157) from the equations (15'5) which describe the observed behaviour of a particle moving under no field of force. We assume that the result holds in all circumstances, The risky point in the generalisation is not in introducing a field of force, because that may be due to an attitude of mind of which the particle has no cognizance. The risk is in passing from regions of the world where Galilean coordinates (a, y, z, t) are possible to intrinsically dissimilar regions where no such coordinates exist—from flat space-time to space-time which is not flat. . The Principle of Equivalence asserts the legitimacy of this generalisation. It is essentially an hypothesis to be tested by experiment as opportunity offers. Moreover it is to be regarded as a suggestion, rather than a dogma admitting of no exceptions. It is likely that some of the phenomena will be 

a curved region as for a flat region. It is to these that the Principle of Equivalence applies. It is a plausible suggestion that the undisturbed motion of a particle and the propagation of light are governed by laws of this specially simple type; and accordingly (15-7) and ( 15°8) will apply in all circumstances. 

would have to be reinstated in passing to the general equations, Clearly there must be some phenomena of this kind which discriminate between 

Ae
 .
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a flat world and a curved world; otherwise we could have no knowledge of 
world-curvature. For these the Principle of Equivalence breaks down. 

The Principle of Equivalence thus asserts that some of the chief differential 
equations of physics are the same for a curved region of the world as for an 
osculating flat region*. There can be no infallible rule for generalising 
experimental laws; but the Principle of Equivalence offers a suggestion for 
trial, which may be expected to succeed sometimes, and fail sometimes. 

The Principle of Equivalence has played a great part as a guide in the 
original building up of the generalised relativity theory; but now that we 
have reached the new view of the nature of the world it has become less 
necessary. Our present exposition is in the main deductive. We start with 
a general theory of world-structure and work down to the experimental 
consequences, so that our progress is from the general to the special laws, 
instead of vice versa. 

18. Retrospect. 

The investigation of the external world in physics is a quest for structure 
rather than substance. A structure can best be represented as a complex of 
relations and relata; and in conformity with this we endeavour to reduce the 
phenomena to their expressions in terms of the relations which we call 
intervals and the relata which we call events. 

If two bodies are of identical structure as regards the complex of interval 
relations, they will be exactly similar as regards observational propertiest, if 
our fundamental hypothesis is true. By this we show that experimental. 
measurements of lengths and duration are equivalent to measurements of the 
interval relation. ; : 

To the. events we assign four identification-numbers or éoordinates 
according to a plan which is arbitrary within wide limits. The connection 
between our physical measurements of interval and the system of identification- 
numbers is expressed by the general quadratic form (2°1). In the particular 
case when these identification-numbers can be so assigned that the product 
terms in the quadratic form disappear leaving only the four squares, the 
coordinates have the metrical properties belonging to rectangular coordinates 
and time, and are accordingly so identified. If any such system exists an 
infinite number of others exist connected with it by the Lorentz trans- 
formation, so that there is no unique space-time frame. The relations of 
these different space-time reckonings have been considered in detail. It is 

* The correct equations for a curved world will necessarily include as a special case those 
already obtained for a flat world. The practical point on which we seek the guidance of the 
Principle of Equivalence is whether the equations already obtained for a flat world will serve as 
they stand or will require generalisation. 

+ At present this is limited to extensional properties (in both space and time). It will be 
shown later that all mechanical properties are also included. Electromagnetic properties require 
separate consideration.
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shown that there must be a particular speed which has the remarkable 
property that its value is the same for all these systems; and by appeal to 
the Michelson-Morley experiment or to Fizeau’s experiment it is found that 
this is a distinctive property of the speed of light. 

But it is not possible throughout the world to choose coordinates fulfilling 
the current definitions of rectangular coordinates and time. In such cases we 
usually relax the definitions, and attribute the failure of fulfilment to a field 
of force pervading the region. We have now no definite guide in selecting 
what coordinates to take as rectangular coordinates and time; for whatever 
the discrepancy, it can always be ascribed to a suitable field of force. The 
field of force will vary according to the system of coordinates selected; but in 
the general case it is not possible to get rid of it altogether (in a large region) 
by any choice of coordinates. This irreducible field of force is ascribed to 
gravitation. It should be noticed that the gravitational influence of a massive 
body is not properly expressed by a definite field of force, but by the property 
of irreducibility of the field of force. We shall find later that the irreducibility 
of the field of force is equivalent to what in geometrical nomenclature is 
called a curvature of the continuum of space-time. 

For the fuller study of these problems we require a special mathematical 
calculus which will now be developed ab initio. 

 



CHAPTER II 

- THE TENSOR. CALCULUS 

_19. Contravariant and covariant vectors. 

We consider the transformation from one system of coordinates 2, Way Migs dq 

to another system 2’, ay, a3, 24. 

The differentials (dxz,, dx, dx, dx) are transformed according to the 

equations (15:2), viz. 

da! = oe da +e dit, + oe de + di ete 

which may be written shortly 

| dan! = > 2 de,, 
ant O%a 

four equations being obtained by taking » = 1, 2, 3, 4, successively. 
Any set of four quantities transformed according to this law is called 

a contravariant vector. Thus if (4?, 4%, 4’, A‘) becomes (4%, A%, A’, A”) in 
the new coordinate-system, where - 

  

Alt SO fe csessessteesees (19:1), 
az] 0%, 

then (A’, A, A’, A‘), denoted briefly as A*, is a contravariant vector. The 
upper position of the suffix (which is, of course, not an exponent) is reserved 
to indicate contravariant vectors. 

If ¢ is an invariant function of position, ie. if it has a fixed value at each 
point independent of the coordinate-system employed, the four quantities 

(52 Op db dd 
02,’ Ox,’ Ox,’ Ox, 

are transformed according to the equations 

op 0%, Of | Oat, ag 0x, OP | Ox, OD | 
Ox, Om, 0X, | Ox, Ox, | Oty! Oty | Ot, Ox,” 

which may be written shortly , 

ag _% Oma ag 
an, a=l On, ax,” 

+   etc, 

Any set of four quantities transformed according to this law is called a 
covariant vector.” Thus if A, is a covariant vector, its transformation law is 

< Oz, 
Ay! = SS ms Ag cecccvccvcscccscecceses 2), b= & ie, (19:2),
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We have thus two varieties of vectors which we distinguish by the upper 
or lower position of the suffix. The first illustration of a contravariant vector, 
dz,, forms rather an awkward exception to the rule that a lower suffix in- 
dicates covariance and an upper suffix contravariance. There is no other 
exception likely to mislead the reader, so that it is not difficult to keep in 
mind this peculiarity of dz,; but we shall sometimes find it convenient to 
indicate its contravariance explicitly by writing 

Ait = (ALY v.ccecceeees oeeeees oceesseeeseees(19'3). 
A vector may either be a single set of four quantities associated with a special point in space-time, or it may be a set of four functions varying continuously with position. Thus we can have an “ isolated vector” or a 

“ vector-field.” 
For an illustration of a covariant vector we considered the gradient of an invariant, 0f/0x,; but a covariant vector is not necessarily the gradient of an invariant. 
The reader wi!! probably be already familiar with the term vector, but the distinction of covariant and contravariant vectors will be new to him. This is because in the elementary analysis only rectangular coordinates are contemplated, and for transformations from one rectangular system to another the laws (191) and (19-2) are equivalent to one another. From the geometrical point of view, the contravariant vector is the vector with which everyone is familiar; this is because a displacement, or directed distance between two points, is regarded. as representing (dx,, dix», dz)* which, as we have seen, is contravariant. The covariant vector is a new conception which does not so easily lend itself to graphical illustration, 

20. The mathematical notion of a vector. 
The formal definitions in the preceding section do not help much to an understanding of what the notion of a vector really is, We shall try to explain this more fully, taking first the mathematical notion of a vector (with which we are most directly concerned) and leaving the more difficult physical notion to follow. ; 
We have a set of four numbers (A,, A,, A;, A,) which we associate with some point (43, Xq, %, 2) and with a certain System of coordinates. We make a change of the coor! nate-system, and we-ask, What will these numbers become in the new coordinates ? The question is meaningless ; they do not automatically “become” anything. Unless we interfere with them they stay as they were. But the mathematician may say “When I am using the coordinates x, a, ws, a, 1 want to talk about the numbers A,, A,, As, A,: and when I am using a, 2/, 2,', aT find that at the corresponding stage of my work I shall want to talk about four different numbers Ay, Ay, Ay, AY. * The customary resolution of a displacement into components in oblique dire 

thi 
ctions assumes is.
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So for brevity I propose to call both sets of numbers by the same symbol &.” 
We reply “That will be all right, provided that you tell us just what numbers 
will be denoted by & for each of the coordinate-systems you intend to use. 
Unless you do this we shall not know what you are talking about.” 

Accordingly the mathematician begins by giving us a list of the numbers 
that £1 will signify in the different coordinate-systems. We here denote these 
numbers by letters. £ will mean* 

X, Y, Z for certain rectangular coordinates z, Y 2, 

R, ©, ® for certain polar coordinates r, 9, ¢, 

_ A, M, N for certain ellipsoidal coordinates A, p, v. 

“But,” says the mathematician, “I shall never finish at this rate. There are 
an infinite number of coordinate-systems which I want to use. I see that 
I must alter my plan. I will give you a general rule to find the new values 
of &{ when you pass from one coordinate-system to another; so that it is only 

necessary for me to give you one set of values and you can ‘find all the others 
for yourselves.” 

In mentioning: a rule the mathematician gives up his arbitrary power of 

himself down to some kind of regularity. Indeed we might have suspected 
that our orderly-minded friend would have some principle in his assignment 
of different meanings to A. But even so, can we make any guess at the rule 
he is likely to adopt unless we have some idea of the problem he is working 
at in which 4 occurs? I think we can; it is not necessary to know anything 
about the nature of his problem, whether it relates to the world of physics or 
to something purely conceptual; it is sufficient that we know a little about 
the nature of a mathematician. 

What kind of rule could he adopt? Let us examine the quantities which 

can enter into it. There are first the two sets of numbers to be connected, 
say, X, Y, Zand FR, ©, ®. Nothing has been said as to these being analytical 
functions of any kind; so far as we know they are isolated numbers. Therefore 
there can be no question of introducing their derivatives. They are regarded 
as located at some point of space (z, y, z) and (r, 6, #), otherwise the question 
of coordinates could scarcely arise. They are changed because the coordinate- 
system has changed at this point, and that change is defined by, quantities like 
ar 070 
dx’ Oxdy’ 
cannot be involved; because they express relations to a distant origin, whereas 
we are concerned only with changes at the spot where (X, Y, Z) is located. 
Thus the rule must involve only the numbers x, Y, Z, &, O, ® combined 
with the mutual derivatives of a, y, z, r, 8, d. 

and so on. The integral coordinates themselves, a, y, z, r, 0, ¢, 

* For convenience I take a three-dimensiona] illustration,
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‘ One such rule would be 

or or or 
R= an xX + ay Y+ a Z 

00 00 00 = x Y+— te eeccecereneccescess(QU'l), O=gZ Ata, P+ 2 (20°1) 

8b 7 2 yO 
Part +s V+a,4 

Applying the same rule to the transformation from (r, 6, ) to (A, #, v) 
we have toe 

on on on 
Aap ht Ot age . seeeees ceeeees seeees (20°2), 

whence, substituting for R, ©, ® from (20:1) and collecting terms, 

A= (ae t Sos ap ae) ¥ + Grae + poe + ov 
+ (at ae +55 2 

-peeRye Bs sesecesesssereaces sesseuacseaeecen vese(20°3), 
which is the same formula as we should have obtained by applying the rule to the direct transformation from (2, Y 2) to (A, w, v). The rule is thus sclf- consistent. But this is a happy accident, pertaining to this particular rule, and depending on the formula 

OX _OXOr BAGO Or AD 
On ar de" 36 dx t 3G Bx’ 

and amid the apparently infinite choice of formulae it will not be easy to find others which have this self-consistency. 
The above rule is that already given for the contravariant vector (19°1). The rule for the covariant vector is also self-consistent. There do not appear to be any other self-consistent rules for the transformation of a set of three numbers (or four numbers for four coordinates) *, 
We see then that unless the mathematician disregards the need for self- consistency in his rule, he must inevitably make his quantity @ either a contravariant or a covariant vector. The choice between these is entirely at his discretion. ‘He might obtain a wider choice by disregarding the property of self-consistency—by selecting a particular coordinate-system, z, ¥, 2, and insisting that values in other coordinate-systems must always be obtained by 

* Except that we may in addition multiply by any power of .the Jacobian of the transforma. tion. This is self-consistent because 

G(x, 4,2) a(r, 6, $) G(x, y, z) 
9 (tr, 6,9) "G0, ») ~G(K, py ¥)” Sets of numbers transformed with this additional multiplication are degenerate cases of tensors of higher rank considered later. See §$ 48, 49. : : : 
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applying the rule immediately to Y, Y, Z, and not permitting intermediate 
transformations. In practice he does not do this, perhaps because he can 
never make up his mind that any particular coordinates are deserving of this 
special distinction. 

We see now that a mathematical vector is a common name for an infinite 
number of sets of quantities, each set being associated with one of an infinite 
number of systems of coordinates. The arbitrariness. in the association is 
removed by postulating that’ some method is followed, and that no one 
system of coordinates is singled out for special distinction. In technical 
language the transformations must form a Group, The quantity (R, O, P) 
as tn no sense the same quantity as (X, Y, Z); they have a common name and 
a certain analytical connection, but the idea of anything like identity is 
entirely excluded from the mathematical notion of a vector. 

21. The physical notion of a vector. 

The components of a force (X, Y, Z), (X’, Y’, Z’), ete. in different systems 
of Cartesian coordinates, rectangular or oblique, form a contravariant vector. 
This is evident because in elementary mechanics a force is resolved into 
components according to the parallelogram law just as a displacement dz, is 
resolved, and we have seen that dz, is a contravariant vector. So far as the 
mathematical notion of the vector is concerned, the quantities (X, Y, Z) and 
(X’, Y’, 2’) are not to be regarded as in any way identical; but in physics 
we conceive that both quantities express some kind of condition or relation 
of the world, and this condition is the same whether expressed by (X, Y, Z) 
or by (X’, Y’, 2’), The physical vector is this vaguely conceived entity, which 
is independent of the coordinate-system, and is at the back of our measure- 
ments of force. 

A world-condition cannot appear directly in a mathematical equation; 
only the measure of the world-condition can appear. Any number or set of 
numbers which can serve to specify uniquely a condition of the world may 
be called a measure of it. In using the phrase “condition of the world” 
I intend to be as non-committal as possible; whatever in the external world 
determines the values of the physical quantities which we observe, will be 
included in the phrase. : 

The simplest case is when the condition of the world under consideration 
can be indicated by a single measure-number. Take two such conditions 
underlying respectively the wave-length A and period 7 of a light-wave. We. 
have the equation 

A=B.L1LOMT Lo eececcscceccsceeeesenes (21:1). 
This equation holds only for one particular plan of assigning measure-numbers 
(the c.G.s. system). But it may be written in the more general form 

NCD ciecesccsecccsseeeeccesssessenes (21:2), 
where ¢ is a velocity having the value 3.10” in the cGs, system. This
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comprises any number of particular equations of the form (21-1). For each 
measure-plan, or system of units, c has a different numerical value. The 
method of determining the necessary change of ¢ when a new measure-plan 
is adopted, is well known; we assign to it the dimensions length + time, and 
by a simple rule we know how it must be changed when the units of A and 7 
are changed. For any general equation the total dimensions of every term ought to be the same. , 

The tensor calculus extends this principle of dimensions to changes of measure-code much more general than mere changes of units. There are conditions of the world which cannot be specified by a single measure-number ; some require 4, some 16, some G4, etc., measure-numbers, Their varicty is such that they cannot be arranged in a single serial order. Consider then an equation between the measure-numbers of two conditions of the world which require 4 measure-numbers, The equation, if it is of the necessary general type, must hold for every possible measure-code 3 this will be the case if, when we transform the measure-code, both sides of the equation are transformed in the same way, ie. if we have to perform the same series of mathematical operations on both sides. 
We can here make use of the mathematical vector of § 20. Let our equa- tion in some measure-code be 

A,, Az, A;, A,=B,, B,, By, B, tte ceeseeeceseeeee(21'3), 
Now let us change the code so that the left-hand side becomes any four numbers A,’,.4,', As, 4,. We identify this with the transformation of a co- variant vector by associating with the change of measure-code the corresponding transformation of coordinates from % to x,’ as in (19-2), But since (213) is to hold in all measure-codes, the transformation of the right-hand side must involve the same set of operations; and the change from B,, Ba, B;, By to B’ By, By, BY will also be the transformation of a covariant vector associated with the same transformation of coordinates from «, to By, . We thus arrive at the result that in an equation which is independent of the measure-plan both sides must be covariant or both contravariant vectors. We shall extend this later to conditions expressed by 16, 64 measure-numbers; the general rule is that both sides of the equation must have the same elements of covariance and contravariance, Covariance and contravariance are a kind of generalised dimension, showing how the measure of one condition of the world is changed when the measure of another con- dition is changed. The ordinary theory of change of units is merel elementary case of this. 7 , yan Coordinates are the identification-numbers of the Points of space-time There is no fundamental distinction between measure-numbers and identifica. tion-numbers, so that we may regard the change of coordinates as part of the general change applied to all measure-numbers, The change of coordinates 
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no longer leads the way, as it did in § 20; it is placed on the same level with 
the other changes of measure. 

When we applied a change of measure-code to (21°3) we associated with 
it a change of coordinates; but it is to be noted that the change of coordinates 
was then ambiguous, since the two sides of the equation might have been 
taken as both contravariant instead of both covariant ; and further the change 
did not refer explicitly to coordinates in the world—it was a mere entry in 
the mathematician’s note-book in order that he might have the satisfaction 
of calling A, and B, vectors consistently with his definition. Now if the 
mexsure-plan of a condition A, is changed the measures of other conditions 
and relations associated with it will be changed. Among these is a certain 
relation of, two events which we may call the aspect* of one from the other; 
and this relation requires four measure-numbers to specify it. Somewhat 
arbitrarily we decide to make the aspect a contravariant vector, and the 
measure-numbers assigned to it are denoted by (dx). That settles the am- 
biguity once for all. For obscure psychological reasons the mind has singled 
out this transcendental relation of aspect for graphical representation, so that 
it Is conceived by us as a displacement or difference of location in a frame of 
space-time. Its measure-numbers (dz) are represented graphically as coordi- 
nate-differences dx,, and so for each measure-code of aspect we get a corre- 
sponding coordinate-frame of location. This “real” coordinate-frame can now 
replace the abstract frame in the mathematician’s note-book, because as we 
have seen in (19°1) the actual transformation of coordinates resulting in a 
change of dz, is the same as the transformation associated with the change of 
dc, according to the law of a contravariant vector. 

Ido not think it is too extravagant to claim that the method of the tensor 
calculus, which presents all physical equations in a form independent of the 
choice of measure-code, is the only possible means of studying the conditions 
of the world which are at the basis of physical phenomena. The physicist is 
accustomed to insist (sometimes quite unnecessarily) that all equations should 
be stated in a form independent of the units employed. Whether this is 
desirable depends on the purpose of the formulae. But whatever additional 
insight into underlying causes is gained by stating equations in a form inde- 
pendent of units, must be gained to a far greater degree by stating them in 
a form altogether independent of the measure-code. An equation of’ this 
general form is called a tensor equation. 

When the physicist is attacking the everyday problems of his subject, he 
may use any form of the equations—any specialised measure-plan—which 
will shorten the labour of calculation; for in these problems he is concerned 
with the outward significance rather than the inward significance of his 

* The relation of aspect (or in its graphical conception displacement) with four measure. 
numbers seems to be derived from the relation of interval with one measure-number, by taking 
account not only of the mutual interval between the two events but also of their intervals from 
all surrounding events, . 

E , 4
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formulae. But once in a while he turns to consider their inward significance 
—to consider that relation of things in the world-structure which is the 
origin of his formulae. The only intelligible idea we can form of such a 
structural relation is that it exists between the world-conditions themselves 
and not between the measure-numbers of a particular code. A law of nature 
resolves itself into a constant relation, or even an identity, of the two world- 
conditions to which the different classes of observed quantities forming the 
two sides of the equation are traceable. Such a constant relation independent 
of measure-code is only to be expressed by a tensor equation. 

It may be remarked that if we take a force (X, Y, Z) and transform it to 
polar coordinates, whether as a covariant or a contravariant vector, in neither 
case do we obtain the quantities called polar components in elementary 
mechanics. The latter are not in our view the true polar components; they 
are merely rectangular components in three new directions, viz. radial and 
transverse. In general the elementary definitions of physical quantities do 
not contemplate other than rectangular components, and they may need to be supplemented before we can decide whether the physical vector is covariant 
or contravariant. Thus if we define force as “ mass X acceleration,” the force turns out to be contravariant; but if we define it by “work = force x displace- ment,” the force is covariant. With the latter definition, however, we have to abandon the method of resolution into oblique components adopted in elementary mechanics, 

In what follows it is generally sufficient to confine attention to the mathe- matical notion of a vector. Some idea of the physical notion will probably give greater insight, but is not necessary for the formal proofs. 
.22. The summation convention. 

We shall adopt the convention that whenever a literal suffix appears twice in a term that term is to be summed for values of the suffix 1, 2,3, 4. For example, (2°1) will be written 

dP =u dada, (Oyu= Jur) vsseeees Se eeseeees (22:1). Here, since « and v each appear twice, the summation 
4 4 : Sy 

H=1 a1 
is indicated ; and the result written out in full gives (2:1), Again, in the equation 

1 O%_ A,’ = aa, A,, 
the summation on the right is with respect to a onl The equation is equivalent to (19:2). 

The convention is not merely an abbreviation but an immense aid to the analysis, §iving 1t an impetus which is nearly always in a profitable direction. Summations occur in our investigations without waiting for our tardy approval. 

ly (we appearing only once). 
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A useful rule may be noted— 
Any literal suffix appearing twice in a term is a dummy suffix, which may 

be changed freely to any other letter not already appropriated i in that term. 
Two or more dummy suffixes can be interchanged*. For example 

Oa Ong ‘Omg Ola 
Gop Ba,/ Ox,’ da,’ da,’ = Gas Ba,’ dar,’ da," Dal eee 

by interchanging the dummy suffixes a and 8, remembering that gs. =gas- 
For a further illustration we shall prove that 

OX, Ox! _ dz, 

The left-hand side written in full is 

Ox, O2,' Oxy Oa, | Ox, Oxy Om, On! 

dar’ Ox, " Om, Ox, * Oxy Ox, Oar Ox,’ 
which by the usual theory gives the change dz, consequent on a change dzy,, 
But x, and 2, are coordinates of the same system, so that their variations are 
independent; hence dx, is zero unless x, and x, are the same coordinate, in 
which case, of course dx,=dz,. Thus the theorem is proved. 

Op. a0, La 
Oa’ Oar, 

A (yz) is any expression involving the suffix p 

    +   

  The multiplier 2 acts as a substitution-operator. That is to say if 

Oop Oata! Sa Fae A (Hy =A (0) sreseesecessnsnnsosssne 24), 

For on the left the summation with respect to p gives four terms corre-: 
sponding to the values 1, 2, 3, 4 of #. One of these values will agree with p. 
Denote the other three values by o, 7, p. Then by (22°3) the result is 

1.4 (v)+0.A(c)+0. Ar) +0. A(p). 

= A(). 
The multiplier accordingly has the effect of substituting v for » in the multi- 
plicand. 

23. Tensors. 

The two laws of transformation given in § 19 are now written— 

Contravariant vectors § A‘#= Se As steeeeeee Secerecenseeneeses (23°11). 

. 1_ 0&q 
Covariant vectors Ay =a0f 5 Ag vececescseccuvewscevesens (23°12), 

Cn 

We can denote by Ay» a “quantity with 16 components obtained by giving 
yw and v the values from 1 to 4 independently. Similarly A,,. has 64 com- 

* At first we shall call attention to such changes when we employ them; but the reader will 

be expected gradually to become familiar with the device as a common process of manipulation. 

4—2
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ponents. By a generalisation of the foregoing transformation laws we classify 
quantities of this kind as follows— 

  

. , a , a / . ; 

Contravariant tensors A‘#” = on on AB Loo ececrenseerevevecees (23°21). 

1 _. 0%_q 0 . Covariant tensors A’ yy = Oa? sa Aap cesecesccecvcececsceeens (23°22). 

‘ 

Mixed tensors A".= = sa 

The above are called tensors of the second rank. We have similar laws for 
tensors of higher ranks. E.g. ; 

7 & . A pro ae aan,’ dae’ Bag As8y occrcecce Oeccevees (23 3). 

It may be worth while to remind the reader that (23'8) typifies 256 distinct 
equations each with a sum of 256 terms on the right-hand side. 

It is easily shown that these transformation laws fulfil the condition of 
self-consistency explained in § 20, and it is for this reason that quantities 
governed by them are selected for special nomenclature. 

If a tensor vanishes, i.e. if all its components vanish, in one system of 
coordinates, it will continue to vanish when any other system of coordinates 
is substituted. This is clear from the linearity of the above transformation 
laws. 

Evidently the sum of two tensors of the same covariant or contravariant 
character is a tensor. Hence a law expressed by the vanishing of the sum of 
a number of tensors, or by the equality of two tensors of the same kind, will 
be independent of the coordinate-system used. . 

The product of two tensors such as A,, and B? is a tensor of the character 
indicated by Aj,,. This is proved by showing that the transformation law of 

_ the product is the same as (23°38). 
The general term tensor includes vectors (tensors of the first rank) and 

invariants or scalars* (tensors of zero rank). 
A tensor of the second or higher rank need not be expressible as a product 

of two tensors of lower rank. 
A simple example of an expression of the second rank is afforded by the 

stresses in a solid or viscous fluid. The component of stress denoted by p,y 
is the traction in the y-direction across an interface perpendicular to the «z-direction. Each component is thus associated with two directions. 

  Ae veccessececsesesceceeees (23:28).   

24. Inner multiplication and contraction. The quotient law. 
If we multiply A, by BY we obtain sixteen quantities 4,3, A,B A,B... constituting a mixed tensor. Suppose that we wish to consider the four 

* Scalar is a synonym for invariant, I generally use the latter word as the more self- explanatory. . . 
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“diagonal” terms A,B, A,B, A,B, A,B‘; we naturally try to abbreviate 

these by writing them A,B*. But by the summation convention A, B* stands 
for the sum of the four quantities. The convention is right. We have no use 
for them individually since they do not form a vector; but the sum is of great 
importance. 

A, B* is called the inner product of the two vectors, in contrast to the 
ordinary or outer product A,B’. 

In rectangular coordinates the inner product coincides with the scalar- 

product defined in the well-known elementary theory of vectors ; but the outer 
product is not the so-called vector-product of the elementary theory. 

By a similar process we can form from any mixed tensor Aj,, a “con- 

tracted*” tensor 4,,-, which is two ranks lower since o has now become a 

dummy suffix. To prove that Aj,, is a tensor, we set r =o in (23'8), 

A’ = CL Ong Oy Oae' é 
ve Oxy Ox, Ox_ 0x3 *FY° 

wus Ox, Ox, + 48 : The substitution operator ba,’ Day changes 6 to y in A‘, by (22'4). Hence 

Gh OX 

Comparing with the transformation law (23:22) we see that Aj,, 1s a covariant 
tensor of the second rank. Of course; the dummy suffixes vy and o are equi- 

valent. , 
Similarly, setting y= in (23°23), 

ies —_— ¥ Ave = Alsy. 

me 08a Op 4B ga gm 
An = 5n7 Bug Ae = A= Ans . 

that is to say A is unaltered by a transformation of coordinates. Hence it 
is an invariant. . 

By the same method we can show that A, BY, Aly, A, BY are invariants. 

In ‘general when an upper and lower suffix are the same the corresponding 

covariant and contravariant qualities cancel out. If all suffixes cancel out in 

this way, the expression must be ‘invariant. The identified suffixes must be 

of opposite characters; the expression Ajae is not a tensor, and no interest 

is attached to it. 

We see that the suffixes keep a tally of what we have called the generalised 

dimensions of the terms in our equations. After cancelling out any suffixes 

which appear in both upper and lower positions, the remaining suffixes must 

appear in the same position in each term of an equation. When that is 

satisfied each term will undergo the same set of operations when a transforma- 

tion of coordinates is made, and the equation will continue to hold in all 

* German, verjiingt.
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systems of coordinates. This may be compared with the well-known condition 
that each term must have the same physical dimensions, so that it undergoes 
multiplication by the same factor when a change of units is made and the 
equation continues to hold in all systems of-units. ; 

Just as we can infer the physical dimensions of some novel entity entering 
into a physical equation, so we can infer the contravariant and covariant 
dimensions of an expression whose character was hitherto unknown. For 
example, if the equation is 

A (BY) Byg = Cue vrsessecveccscecccsvescares (241), 

where the nature of A (uv) is not known initially, we see that 1 (uv) must 

be a tensor of the character Af,, so as to give 

Ay Bye = Cue, 

which makes the covariant dimensions on both sides consistent, 
The equation (24"1) may be written symbolically 

A (pv) = Cyo/ Bre, 

and the conclusion is that not only the product but also the (symbolic) 
quotient of two tensors is a tensor. Of course, the operation here indicated 
is not that of ordinary division. 

This quotient law is a useful aid in detecting the tensor-character of 
expressions. It is not claimed that the general argument here given amounts 
to a strict mathematical proof. In most cases we can supply the proof re- 
quired by one or more applications of the following rigorous theorem— 

A quantity which on inner multiplication by any covariant (alternatively, 
by any contravariant) vector always gives a tensor, is itself a tensor. 

_ For suppose that - A (pv) Br 

is always a covariant yector for any choice of the contravariant vector B’. 
Then by (23°12) 

{A’ (uv) BY} = 2 (4 (a) BA oo ccccccccsesenees (24-2), c 

OL 
  

But by (23-11) applied to the reverse transformation from accented to un- 
accented coordinates 

, xr, Ba 2 Dry B 5g, P . 

Hence, substituting for BS in (242), 

0 (AY (up) — 2% Oct - Be (4! (un) — 5 Fs (e8)) =0. 
Since B’’ is arbitrary the quantity in the bracket must vanish. This shows that A (uy) is a covariant tensor obeying the transformation law (23:22), We shall cite this theorem as the “ rigorous quotient theorem,” 
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25. The fundamental tensors. 

It is convenient to write (22:1) as 

ds* = 9, (dx)* (dz) 

in order to show explicitly the contravariant character of dz,=(dz)". Since 
ds? is independent of the coordinate-system it is an invariant or tensor 
of zero rank. The equation shows that g,,(dz) multiplied by an arbitrarily 
chosen contravariant vector (dx)” always gives a tensor of zero rank; hence 
Ju» (daz is a vector. Again, we see that g,, multiplied by an arbitrary con- 
travariant vector (dz) always gives a vector; hence g,, is a tensor. This 
double application of the rigorous quotient theorem shows that g,, is a 
tensor; and it is evidently covariant as the notation has anticipated. 

Let g stand for the determinant 

Iu fr, Ns Iu 

Gn Ga Ju Ja 

Jn Grr Jos Gos 

Gn Go Js Ga 

Let g*” be defined as the minor of g,, in this determinant, divided by g*. 
Consider the inner product g,0g”. We see that « and »v select two rows 

in the determinant; we have to take each element in turn from the p» row, 
multiply by the minor of the corresponding element of the y row, add 
together, and divide the result by g. This is equivalent to substituting the 
p row for the yv row and dividing the resulting determinant by g. If» is not 
the same as v this gives a determinant with two rows identical, and the 
result is 0. If « is the same as v we reproduce the determinant g divided by 

itself, and the result is 1. We write 
G.=IueIS” 

=O ifptvl ccccccssecescessesseeees (25-1). 
=1 ifp=v 

Thus g has the same property of a substitution-operator that we found 

  for 28s Oe in (224). For example, . 
a Oly ” GAB = AP LOFOEO ceccecssnecesnneee (25-2), 

Note that g, has not the same meaning as g, with p=v, because a 

summation is implied. Evidently . 

GeH LAL HLH ad eccccceccseceeteetnes (25°3). 

The equation (25:2) shows that g” multiplied by any contravariant vector 

always gives a vector. Hence g) is a tensor. It is a very exceptional tensor 

since its components are the same in all coordinate-systems. 

* The notation anticipates the result proved later that g*” is a contravariant tensor. 

+ Note that g” will act as a substitution-operator on any expression and is not restricted to 
B : ; 

operating on tensors.
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Again since g,.g’” is a tensor we can infer that g’” is a tensor. This is 
proved rigorously by remarking that g,,A“ is a covariant vector, arbitrary 
on account of the free choice of A". Multiplying this vector by g’* we have 

Ine” At = 7A" = A’, 

so that the product is always a vector. Hence the rigorous quotient theorem 
applies. 

The tensor character of g*” may also be demonstrated by a method which 
shows more clearly the reason for its definition as the minor of Ju divided by 
g. Since g,, A” is a covariant vector, we can denote it by B,. Thus 

JuA) + 9A? + 9,45 +9,,A‘=B,; ete. . 
Solving these four linear equations for .A1, 4%, A’, A‘ by the usual method of 
determinants, the result is 

Al = g) B+ 77° B+ GF B+ 9"B,; ete, 
so that At = g*"B,. 
Whence by the rigorous quotient theorem g*” is a tensor. 

We have thus defined three fundamental tensors 

Gurr Tur gr 
of covariant, mixed, and contravariant characters respeotively, 

26. Associated tensors. 

We now define the operation of raising or lowering a suffix. Raising the suffix of a vector is defined by the equation 
At= gr” A,, 

and lowering by the equation 

An= uA’. 
. 

3 . es . 
For a more general tensor such as A’,,» the operation of raising wis defined in the same way, viz. 

ATP PAM cccccessseccececececs.. (26:1), and for lowering 
Le 3 iy 

Axon = SuyAtg ssesssccesseesscseecesssees (26-2). 
These definitions are consistent, since if we raise a suffix and then lower it we reproduce the original tensor. Thus if in (26:1) we multi order to lower the suffix on the left, we have 

8 vy 4y8 
Iuctig = IucI Als, 

= g. Av’ 

| 
= Au, by (25-2), 

which is the rule expressed by (26-2), 

ply by Jus In 
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It will be noticed that the raising of a suffix y by means of g*” is accom- 
panied by the substitution of » for v. The whole operation is closely akin to 
the plain substitution of » for vy by means of g.. Thus 

multiplication by g#” gives substitution with raising, 
multiplication by g’ gives plain substitution, 

multiplication by g,, gives substitution with lowering. 
In the case of non-symmetrical tensors it may be necessary to distinguish 

the place from which the raised suffix has been brought, eg. to distinguish 
between A,” and A”,. 

It is easily seen that this rule of association between tensors with suffixes 
in different positions is fulfilled in the case of g*”, Jn» Gur; in fact the defini- 
tion of gy in (25°1) is a special case of (26°1). 

For rectangular coordinates the raising or lowering of a suffix leaves the 
components unaltered in three-dimensional space*; and it merely reverses 
the signs of some of the components for Galilean coordinates in four- 
dimensional space-time. Since the elementary definitions of physical 
quantities refer to rectangular axes and time, we can generally use any one 
of the associated tensors to represent a physical entity without infringing 
pre-relativity definitions. This leads to a somewhat enlarged view of a tensor 
as having in itself no particular covariant or contravariant character, but 
having components of various degrees of covariance or contravariance repre- 
sented by the whole system of associated tensors. That is to say, the raising 
or lowering of suffixes will not be regarded as altering the individuality of 
the tensor; and reference to a tensor A,, may (if the context permits) be 

taken to include the associated tensors A’ and A‘, 

It is useful to notice that dummy suffixes have a certain freedom of move- 
ment between the tensor-factors of an expression. Thus 

Ayp B? = A*Bag, Aya B® = Apt Bra vesecsesvecsoes (26°38). 

The suffix may be raised in one term provided it is lowered in the other. 
The proof follows easily from (26-1) and (26:2). 

In the elementary vector theory two vectors are said to be perpendicular 
if their scalar-product vanishes; and the square of the length of the vector is 

its scalar-product into itself. Corresponding definitions are adopted in the 

tensor calculus. - 

The vectors A, and B, are said to be perpendicular if 

Ay BY 0 seeccsessecesesseseseseensees (26-4). 
If l is the length of A, (or A*) 

2 = Ay AM ciscseccnssersereseeeeessesees (26°5). 

A vector is self-perpendicular if its length vanishes. 

“If ds? = dz,2 + drs +dz3, Juv=g"" =g", 80 that all three tensors are merely substitution- 
operators. 
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The interval is the length of the corresponding displacement dz, because 
ds? = gy, (dx). (dx)” 

' = (dz), (dz): 

by (262). A displacement is thus self-perpendicular when it is along a 
light-track, ds = 0, - 

If a vector a, receives an infinitesimal increment dA, perpendicular to 
itself, its length is unaltered to the first order; for by (26°5) 

. (l+dl)=(A, -+dA,)(A* +dA+) 
=A,A*+ A*ddA,+A,dA# to the first order 
=P+2A,dA" by (26°83), 

and A,dA* = 0 by the condition of perpendicularity (26°4). 
In the elementary vector theory, the scalar-product of two vectors is 

equal to the product of their lengths multiplied by the cosine of the angle 
between them. Accordingly in the general theory the angle @ between two 
vectors A, and B, is defined by 

= A, Be 

(A.A) (Bg B?) 
Clearly the angle so defined is an invariant, and agrees with the usual 
definition when the coordinates are rectangular. In determining the angle 
between two intersecting lines it makes no difference whether the world is 
curved or flat, since only the initial directions are concerned and these in any 
case lie in the tangent plane. The angle @ (if it is real) has thus the usual 
geometrical meaning even in non-Euclidean space. It must not, however, be 
inferred that ordinary angles are invariant for the Lorentz transformation; 
naturally an angle in three dimensions is invariant only for transformations 
in three dimensions, and the angle which is invariant for Lorentz transforma- 
tions is a four-dimensional angle. 

From a tensor of even rank we can construct an invariant by bringing 
half the suffixes to the upper and half to the lower position and contracting. 
Thus from A,,., we form Aj, and contract, obtaining A= A*, This in- 
variant will be called the spur*. Another invariant is the square of the length Ay,orA“’7, There may also bé intermediate invariants such as 
AvoAp : | 

seveeee seeeeeneeeceee(20'6), 

27. Christoffel’s 83-index symbols. 
We introduce two expressions (not tensors) of great importance throughout our subsequent work, namely 

  

3 (ue, 8r0 Bus .. [py oJ=} (gs + oe ue) sevseessessseesessees (27°1), 
. og, x 29, og, v = oA Be vA SRY 

: 
{u», o} = 49 (ee +e =) esseeteceesees (27-2) 

* Originally the German word Spur, 
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We have . (ur, o} = G9 [Uy, A] crecesseseserereresesees (27°3), 
[H¥, 7] = goa {uy A} ccrecsesccccscescesveees (27°4). 

The result (27°3) is obvious from the definitions. To prove (27-4), multiply 
(27°3) by gea; then 

Goa {HY, } = Jong” [nv, d] 
= gh (py, »] 

= [py, a], 
which is equivalent to (2774). , 

Comparing with (2671) and (26:2) we see that the passage from the 
“square” to the “curly” symbol, and vice versa, is the same process as raising 
and lowering a suffix. It might be convenient to use a notation in which 
this was made evident, e.g. ; uo 

. Tus, = [ev, o], Tn = {py, o}, 

but we shall adhere to the more usual notation. 
From (27'1) it is found that 

O 7 

; Cur, o] +[ov, p]= we eseeseeesscesseneens (27°5). 

There are 40 different 3-index symbols of each kind. It may here be 

explained that the g,, are components of a generalised potential, and the 

83-index symbols components of a generalised force in the gravitational 

theory (see § 55). 

28, Equations of a geodesic. © . 

We shall now determine the equations of a geodesic or path between two 

points for which 

| ds is stationary. 

This absolute track is of fundamental importance in dynamics, but at the 

moment we are concerned with it only as an aid in the development of the 

tensor calculus*. 

Keeping the beginning and end of the path fixed, we give every inter- 

mediate point an arbitrary infinitesimal displacement dz, so as to deform the 

path. Since . , 

ds? = g,,da,dx,, ; - 

2ds& (ds) = day day 89uv + Jur dX, 8 (day) + urd, § (dry) 

x dog, 28 Bg + guatlend (Ets) + Guodoyd (Bry) .-(28°1).   

The stationary condition is 

* Our ultimate goal is equation (29°3). An alternative proof (which does not introduce the 

calculus of variations) is given in § 31. : . .
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which becomes by (28°1) 

1 f{daty dity Ou» dat, a da, d (s I} as =o, 5 ee ba, 07 + Jur Gs dg (8%) + Gur Ge GF, (an) 
or, changing dummy suffixes in the last two terms, 

1 f (day, day, equ, day, oe) ¢ \ =0. 
see We Be + (Gua GE + Gor Fe qs Ore)¢ ds = 0 

Applying the usual method of partial integration, and rejecting the inte- 
grated part since dz, vanishes at both limits, 

Lf (dary dity 2g ( diy 4 dee } ds =0. 5) aa de be ~ ag (oe Ge + dekh Be, 
This must hold for all values of the arbitrary displacements 82, at all 

points, hence the coefficient in the integrand must vanish at all points on the 
path. Thus 

Ldaypday0gu, 1dgue dit, ldgvdz, 1 day 1 dz, oC a ne ei ees ne 2ds ds 0a, 2 ds ds 2 ds ds 99" Ga — 39% ga = 
Now* Wu One dey Mor _ 2er dar — ds da, ds *” ds Oa, ds * 
Also in the last two terms we replace the dummy suffixes « and vy by e«. The equation then becomes 

| Bae ae (et — See — Me) _ 9 P= 9 seeseeseees (283), 

  

  

0. 

We can get rid of the factor 9-0 by multiplying through by g* 80 as to ‘form the substitution operator g*. Thus 

  

Ldity diy om (20s , Ove , City 08 Bas ds (See + Ge — Be) + = 0 an eccenes (28-4), 

or, by (27-2) Oe + {uv, a} Cin de =O cieeeccccccecececees (28°5). 
For a= 1, 2, 3, 4 this gives the four equations determining a geodesic, 
29. Covariant derivative of a vector. 
The derivative-of an invariant is a covariant vector ($19), but the derivative of a vector is not a tensor. We proceed to find certain tensors . which are used in this calculus in place of the ordinary derivatives of vectors, Since dz, is contravariant and ds invariant, a “ velocity” da,/ds is a contravariant vector. Hence if A, is any covariant vector the inner product 

At, . . . 
Ax, as 18 Invariant, 

* These simple formulae are noteworthy as illustrating the great value of the summation convention. The law of total differentiation for four coordinates becomes Jormally the same as for one coordinate, 
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The rate of change of this expression per unit interval along any assigned 
curve must also be independent of the coordinate-system, i.e. 

¢ (4. oe) Is INVATIANE .........ccesessceeeeees (29°1). 

This assumes that we keep to the same absolute curve however the coordinate- 
system is varied. The result (29:1) is therefore only of practical use if.it is 
applied to a curve which is defined independently of the coordinate-system. 
We shall accordingly apply it to a geodesic.’ Performing the differentiation, : 

oe Ce, a +An oon is invariant along a geodesic...... (29:2). 

From (28°5) we have that along a geodesic 

A az, =A ax, dx, dx, 

eds? * “ds? ‘ds. =— Aa {p, irs ds* 

Hence (29:2) gives 

Sin Ge (4 — A, {py, a}) is invariant. 

The result is now general since the curvature (which distinguishes the 
geodesic) has been eliminated by using the equations (28°5) and only the 
gradient of the curve (dz,/ds and dz,/ds) has been left in the expression. 

Since dz,/ds and dz,/ds are contravariant vectors, their co-factor is a 
covariant tensor of the second rank. We therefore write 

aA 
Wn, — {uv, Q} Ag, rcececceccecsesvecens (29°83), 

and the tensor A,, is called the covariant derivative of A,. 

By raising a suffix we obtain two associated tensors A#, and A,” which 

must be distinguished since the two suffixes are not symmetrical. The first 

of these is the most important, and is to be understood when the tensor 

is written simply as A, without distinction of original position. 

A,= Ga AS, 

  

Aw= 

Since 
we have by (29°3) a. 

Aa = e (gee A*) — {ov, a} (Gee A®) 

= 90 + As ee —[ov, e] At by (27-4) 

= gee +[ev, co] At by (27°5). 

Hence multiplying through by g*%,.and remembering that gtg,, is a 

substitution-operator, we have 
. 

0A 
Af y= On, 

Bz 
  +t fev, p} AS ccesescceecerecceeenenes (29°4),
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This is called the covariant derivative of A“. The considerable differences 
between the formulae (29°3) and (29-4) should be carefully noted. 

The tensors 4,” and A’, obtained from (29°3) and (29:4) by raising the 
second suffix, are called the contravariant derivatives of A, and A*. We shall 
not have much occasion to refer to contravariant derivatives. 

80. Covariant derivative of a tensor. 

The covariant derivatives of tensors of the second rank are formed as 
follows— 

  

  

  

BY oAt ov wa At” = Aa + fac, p} AY + {ac, vy} AM ee (30°1), 

A’ OA a i 
po = Die _ {pueo, a} Ag+ {ac, v} Ad Ore recesecccces (30°2), 

A 0A,, pve = aa, {uc, a} Ay — {vo, a} Aya sceseceseees (30'3). 

And the general rule for covariant differentiation with respect to a, is 
illustrated by the example 

0 . 
. 

uve = One hey —- {Ac, a} Abu ™ {us, a} Ajay — {vc, a} Axua + {ac, p} Aany 

seeeeeese (304). 
The above formulae are primarily definitions; but we have to prove that 

the quantities on the right are actually tensors. This is done by an obvious generalisation of the method of the preceding section. Thus if in place of 
(291) we use... - .- 

ad dz,da\.. |, . ds ( “Jy Gz) 38 invariant along a geodesic, 
we obtain 

OA uy diatg dx, da, A dz, dix, dx, dx, 
Ox, ds ds ads “ds ds? “ds ds?° 

Then substituting for the second derivatives from (285) the expression reduces to _ 

da, da, dite. . . 
“Ts Is Gs 1s invariant, 

showing that A,,, is a tensor. 
The formulae (30-1) and (80°2) are obtained by raising the suffixes y and #, the details of the work being the same as in deducing (29-4) from (29'3). Consider the expression 

Byol, + By C,o, 
the o denoting covariant differentiation, By (29°83) this is equal to (Steen) 48 (on) 025 5 

. 

. =i, (B,C,) — (uo, a} (B.C,) — {vo, a} (B,.C.). 

S
E
 

e
e
 
a
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But comparing with (80'8) we see that this is the covariant derivative of the 
tensor of the second rank (B,C,). Hence 

(Bu Ce = Bua Oy + Bu Cu sescsseses eeneeeees (305). 
Thus in covariant differentiation of a product the distributive rule used in 
ordinary differentiation holds good. . 

Applying (30°3) to the fundamental tensor, we have 

My a 
Juve = on — {uo, 0} gar — ive, a} Jua 

OJ ur 
= a —[pe, »]—[ve, p] 

=0 -by (27°5). 

Hence the covariant derivatives of the fundamental tensors vanish identi- 

cally, and the fundamental tensors can be treated as constants in covariant 

differentiation. It is thus immaterial whether a suffix is raised before or after 

the differentiation, as our definitions have already postulated. 
If J is an invariant, TA, is a covariant vector; hence its covariant 

derivative is 
0 (LA), = (Ay) — {ans 0) Tg 

=A, of +TAyy. 

But by the rule for differentiating a product (30°5) 

(LA,) = 1L,A,+ TAy, 

ol 
so that I= az," 

Hence the covariant derivative of an invariant is the same as its ordinary 

derivative. - | 

It is, of course, impossible to reserve the notation A,, exclusively for the 

covariant derivative of A,, and the concluding suffix does not denote differen- 

tiation unless expressly stated. In case of doubt we may indicate the covariant 

and contravariant derivatives by (A,), and (A,)’. 

The utility of the covariant derivative arises largely from the fact that, when 

the g,, are constants, the 3-index symbols vanish and the covariant derivative 

reduces to the ordinary derivative. Now in general our physical equations 

have been stated for the case of Galilean coordinates in which the Juv are 

constants; and we may in Galilean equations replace the ordinary derivative 

variant derivative without altering anything. This is a necessary by th \ 

yince to the general tensor form which holds true step in reducing such equations 

for all coordinate-systems. 

As an illustration suppose we wish to find the general equation of pro-
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pagation of a potential with the velocity of light. In Galilean coordinates the 
equation is of the well-known form 

76 _ 8 O86 CG 9 0°6). C$ =a - 53 ay Bat O r.cccccsecesees (30°6) 

The Galilean values of g*” are g#=1, g? =g" =g" = —1, and the other 
components vanish. Hence (30°6) can be written 

ah 0 as 
00,00, 
  ad 

The potential ¢ being an invariant, its ordinary derivative is a covariant 
vector ¢,=0/dx,; and since the coordinates are Galilean we may insert 
the covariant derivative ¢,, instead of 0¢,/dx,. Hence the equation becomes 

9” Pur =O vcsccsevsccescessssccssssseees (30°7). 
/ Up to this point Galilean coordinates are essential; but now, by examining the 
covariant dimensions of (30°7), we notice that the left-hand side is an invariant, 

and therefore its value is unchanged by any transformation of coordinates. 
Hence (30°7) holds for all coordinate-systems, if it holds for any. Using (29'3) 
we can write it more fully 

  gn ( 9 _ tay, a} se) =O veecseecsseseeeee (30'S). 02, 0x, 

This formula may be used for transforming Laplace’s equation into curvilinear 
coordinates, ete. 

It must be remembered that a transformation of coordinates does not alter 
the kind of space. Thus if we know by experiment that a potential ¢ is 
propagated according to the law (80°6) in Galilean coordinates, it follows 
rigorously that it is propagated according to the law (80°8) in any system of 
coordinates in flat space-time; but it does not follow rigorously that it will 
be propagated according to (80°8) when an irreducible gravitational field is 
present which alters the kind of space-time. It is, however, a plausible ~ 
suggestion that (30°8) may be the general law of propagation of ¢ in any kind 
of space-time; that is the suggestion which the principle of equivalence makes. 
Like all generalisations which are only tested experimentally in a particular 
case, it must be received with caution. 

The operator CF will frequently be referred to. In general coordinates it 
is to be taken as defined by 

1) Aap... = 977 (Ayy.. Jap coceccesecctsccsescecces (30'9). 
Or we may write it in the form 

O=((...)a)% 
ie. we perform a covariant and contravariant differenti ation and contract 
them.



30, 31 COVARIANT DERIVATIVE OF A TENSOR 65 

SuMMARY OF RULEs FoR CovARIANT DIFFERENTIATION, 

1. To obtain the covariant derivative of any tensor A‘::: with respect to 
&q, we take first the ordinary derivative 

ass 

and for each covariant suffix A‘:;:, we add a term 

—{uo, a} Anat; 
and for each contravariant suffix A‘:":, we add a term 

| + (ao, pn} Ant. 
2. The covariant derivative of a product is formed by covariant differen- 

tiation of each factor in turn, by the same rule as in ordinary differentiation. . 

8. The fundamental tensor g,, or g”” behaves as though it were a constant 
in covariant differentiation. 

4. The covariant derivative of an invariant is its ordinary derivative. 

5. In taking second, third or higher derivatives, the order of differentiation 

is not interchangeable*. 

831. Alternative discussion of the covariant derivative. 

. , 0%, On, 
By (23:2 2) I w= ax! aa? Jap- 

Hence differentiating . 

og" "2 = gun Ox,  Oag OW, ca Ox, xg Bay Ofas (B11), 

Orn Oxy’ Ox Oa,’ Oxy" Ox,’ Ox,'S * Oxy! Oxy Ox,’ Oxy 

Here we have used 

    

  

Ogap _ Wap Oxy 
ony’ Olly aa,’’ 

and further we have interchanged the dummy suffixes a and Bi in the second 

term in the bracket. Similarly 

Og’ va = 99 { Oa, Oatps  O*a sat Otte Ox Oy agey .. (81-12), 

On On: 6 08," day’ Oa, 0x,’ Ox,’ Ox, Ox,’ Oxy" 0a,” 

a Ha = 900 {era O° Lo, Ox Or, sa Oda Oetg Oary gay . (31°18). 

  

  

Bee,’ Oar,’ Bay’ * Oax,’Oary’ Oxy’S ~ Oce,! Oar,’ Oar,’ Carp * 

Add 31-12) and (31°18) and subtract (81:11), we obtain by (27-1) 

, 0, ‘Outp OXa OX Oky 12 

[uv, A] = Ge8 5 Toa) Bay) * Bax! Oxy aan? (a8, ene saeee 3 ).     

* This ig inserted here for completeness; it is discussed later. 

a
n
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Multiply through by g’¥ i we have by (27°3) 

{u, p} a = Jap mae .g” Ss = +g” Sy = Zs es [a8, 7] 

= Jap gh ae + ss ss go" (a8, y] by (23:21) 

= may im as {QB, €} .eeeeeceececseceececesceeeseen 

a formula which determines the second derivative @z,/dz,' dz,’ in terms of the 
first derivatives. 

on, . Ay = Ag ceeececcececescecneceseees 31-4). By (28112) “axe (81-4) 
Hence differentiating 

Ody! _ Bs, Boe Das Od, 
Ox, ~ Oa, On,' ~* OL Ox, Oxg 

| 1 0%, O08, OX~p ) O24 Ox OA, . = ({u», p} ia,’ - dae an,’ {aB, é} A,+ an,’ an,’ Oy (31°5) 

by (313) and changing the dummy suffixes in the last term. 

Also by (23°12) Ao =A,’ 
Hence (31°5) becomes ° 

0A, 141. 0%, Oxg (OA, . On? ~ {uv, p} A= a, Ba,’ ‘= — {a8, e} A.) seteeeees (31°6), 

showing that oe — {ur, p} A, 

obeys the law of transformation of a covariant tensor, We thus reach the result (29°3) by an alternative method. 
A tensor-of the second or higher rank may be taken instead of A, in (81°4), and its covariant derivative will be found by the same method. 
32. Surface-elements and Stokes’s theorem. 
Consider the outer product +” of two different displacements dz, and 82,. The tensor >#” will be unsymmetrical in # and v. We can decompose any such tensor into the sum of a symmetrical part 4(Se +2) and symmetrical part $(S#” — 37), 
Double* the antisymmetrical part of the product dx,82, is called the surface-element contained by the two displacements, and is denoted by dS’, We have accordingly 

an anti- 

dS = dz, dn, ~ Dey Spy eeeeeecsecccccccesees (82°1) 
dz, da, 

8x, 82, 
pression is avenged by the appearance of the factor 4 in most 

    

* The doubling of the natural ex 
formulae containing dS#”, 
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In rectangular coordinates this determinant represents the area of the pro- 
jection on the py plane of the parallelogram contained by the tio displace- 
ments; thus the components of the tensor are the projections of the 
parallelogram on the six coordinate planes. In the tensor dS#” these are 
repeated twice, once with positive and once with negative sign (corresponding 
perhaps to the two sides of the surface). The four components dS", dS*, etc. 
vanish, as must happen in every antisymmetrical tensor. The appropriateness 
of the name “surface-element” is evident in rectangular coordinates; the 
geometrical meaning becomes more obscure in other systems. 

The surface-element is always a tensor of the second rank whatever the 
number of dimensions of space; but in three dimensions there is an alternative 
representation of a surface area by a simple vector at right angles to the 
surface and of length proportional to the area; indeed it is customary in three 
dimensions to represent any antisymmetrical tensor by an adjoint vector. 
Happily in four dimensions it is not possible to introduce this source of 
confusion. 

The invariant + Ay,dSe 

is called the flux of the tensor A,, through the surface-element. The flux 
involves only the antisymmetrical part of A,,, since the inner product of a 
symmetrical and an antisymmetrical tensor evidently vanishes. 

Some of the chief antisymmetrical tensors arise from the operation of 
curling. If X,, is the covariant derivative of K,, we find from (29°38) that 

OK, ak, 
| Ky — Kn = Fo — Ge. . 

since the 3-index symbols cancel out. Since the left-hand side is a tensor, the 
right-hand side is also a tensor, The right-hand side will be recognised as the 
“curl” of elementary vector theory, except that we have apparently reversed 
the sign. Strictly speaking, however, we should note that the curl in the 
elementary three-dimensional theory is a vector, whereas our curl is a tensor; 
and comparison of the sign attributed is impossible. 

The result that the covariant curl is the same as the ordinary curl does 
not apply to contravariant vectors or to tensors of higher rank: 

oke oak 
Ke, — KB" $ Bay Ban 

  

In tensor notation the famous theorem of Stokes becomes 

1pfjok, oKY , ; [Edm =-3 [ | (st- 7a) Fe (2°3), 

_ the double integral being taken over any surface bounded by the path of the 

single integral. The factor 4 is needed because each surface-element occurs 

twice, e.g. as dS" and —dS". The theorem can be proved as follows— 

Since both sides of the equation are invariants it is sufficient to prove the 

equation for any one system of coordinates. Choose coordinates so that-the 
. 5—2 
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surface is on one of the fundamental partitions 2, = const., ‘az, = const., and so 

that the contour consists of four parts given successively by 2,=a, 2=8, 
L,=,'0,=8; the rest of the mesh-system may be filled up arbitrarily. For 
an elementary mesh the containing vectors are (da,, 0, 0, 0) and (0, dz, 0,0), - 

so that by (32°1) | 
y G21) dS" = da,doy = — dS, 

Hence the right-hand side of (32°3) becomes _ 
>. 108 /0K,: OK 
~ [Un Ges ~ Get) enee 

=— | "UP — (GP de, + [cer ~[KP} de, 

which consists of four terms giving [K,.da, for the four parts of the contour. 
This proof affords a good illustration of the methods of the tensor calculus. 

The relation to be established is between two quantities which (by examination 
of their covariant dimensions) are seen: to be invariants, viz. K,. (dx) and 
(Ky, — Kin) dS”, the latter having been simplified by (32:2). Accordingly it 
is a relation which does not depend on any particular choice of coordinates, 
although in (32:3) it is expressed as it would appear when referred to a 
coordinate-system. In proving the relation of the two invariants once for all, 
we naturally choose for the occasion coordinates which simplify the analysis ; 
and the work is greatly shortened by drawing our curved meshes so that four 
partition-lines make up the contour. 

83. Significance of covariant differentiation. 

Suppose that we wish to discuss from the physical point of view how a 
field of force varies from point to point.- If polar coordinates are being used, 
a change of the r-component does not necessarily indicate a want of uniformity 
in the field of force; it is at least partly attributable to the inclination between 
the r-directions at different points. Similarly when rotating ‘axes are used, 
the rate of change of momentum h is given not by dh,/dt, etc., but by 

Ah,/dt — ashe + Wghy, C60. .eccccccecescencecces (83:1). 
The momentum may be constant even when the time-derivatives of its com- 
ponents are not zero. 

We must recognise then that the change of a physical entity is usually 
regarded as something distinct from the change of the mathematical com- 
ponents into which we resolve it. In the elementary theory a definition of the 
former change is obtained by identifying it with the change of the components 
in unaccelerated rectangular. coordinates; but this is of no avajl in the genera] 
case because space-time may be of a kind for which no such coordinates exist. 
Can we still preserve this notion of a physical rate of change in the general 
case ? 

Our attention is directed to the rate of change of a physical entity because . of its importance in the laws of physics, e.g. force is the time-rate of change
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of momentum, or the space-rate of change of potential; therefore the rate of 
change should be expressed by a tensor of some kind in order that it may enter 
into the general physical laws. Further in order to agree with the customary 

* definition in elementary cases, it must reduce to the rate of change of the 
rectangular components when the coordinates are Galilean. Both conditions 
are fulfilled if we define the physical rate of change of the tensor by its co- 

- variant derivative. . - a a 
The covariant derivative A,, consists of. the term 0A,/éx,, giving the 

apparent gradient, from which is subtracted the “spurious change” {pnv, a} Aa 
attributable to the curvilinearity of the coordinate-system. When Cartesian 
coordinates (rectangular or oblique) are used, the 3-index symbols vanish and 
there is, as we should expect, no spurious change.. For the present we shall 
call A,, the rate of absolute change of the vector A,. - 

Consider an elementary mesh in the plane of z,2,, the corners being at 

A (Gs, te), Bt, + dx, 09), C(t, + dite, te + date), D (ty5 te + dite) 

Let us calculate the whole absolute change of the vector-field A, as we pass 

round the circuit ABCDA. . 

(1) From A to'B, the absolute change is A,,da,, calculated for x,*. 

(2) From B to C, the absolute change is A, «da, calculated for 2, + dz,. 

.(3) From C to D, the absolute change is — A,,dz,, calculated for x, + dag. 

(4) From D to A, the absolute change is — Ayedaz, calculated for 2,. 

Combining (2) and (4) the net result is the difference of the changes A,,dax, 

at 2, + dz, and at 2, respectively. We might be tempted to set this difference 

down as’ 
a 

aa, (Apodas) day. 

But as already explained that would give only the difference of the mathe- 

matical components and not the “absolute difference.” We must take the 

covariant derivative instead, obtaining (since dz, is the same for (2) and (4)) 

; A pov dated ay. 

Similarly (8) and (1) give aexde, 
so that the total absolute change round the circuit is 

(A pov — Apre) Mitr Allg sesvcereseecsceneceenees (33-2). 

We should naturally expect that on returning to our starting point the. 

absolute change would vanish. How could there have been any absolute change 

on:balance, seeing that the vector is now the same A, that we started with ? 

Nevertheless in general Ayo # Apev; that is to say the order of covariant 

differentiation is not permutable, and (33:2) does not vanish, 

“* We suspend the summation convention since dzy and drg'are edges of a particular mesh. 

_ The convention would give correct results; but it goes too fast, and we cannot keep pace with it.
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which may also be written 
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That this result is not unreasonable may be seen by considering a two- 
dimensional space, the surface of the ocean. If a ship’s head is kept straight 
on the line of its wake, the course isa great circle. Now suppose that the ship 
sails round a circuit so that the final position and course are the same as at 
the start., If account is kept of all the successive changes of course, and the 
angles are added up, these will not give a change zero (or 277) on balance. For 
a triangular course the difference is the well-known “spherical excess.” Simi- 
larly the changes of velocity do not cancel out on balance. Here we have an 
illustration that the absolute changes of a vector do not cancel out on bringing 
it back to its initial position. 

If the present result sounds self-contradictory, the fault lies with the name 
“absolute change” which we have tentatively applied to the thing under dis- 
cussion. The name is illuminating in some respects, because it shows the 
continuity of covariant differentiation with the conceptions of elementary 
physics. For instance, no one would hesitate to call (33:1) the absolute rate 
of change of momentum in contrast to the apparent rate of change dh,/dt. But 
having shown the continuity, we find it better to avoid the term in the more 
general case of non-Euclidean space. 

Following Levi-Civita and Wey] we use the term parallel displacement for what we have hitherto called displacement without “absolute change.” The condition for parallel displacement is that the covariant derivative vanishes. 
We have hitherto considered the absolute change necessary in order that the vector may return to its original value, and so be a single-valued function of position. If we do not permit any change en route, i.e. if we move the vector by parallel displacement, the same quantity will appear (with reversed sign) as a discrepancy $A, between the final and initial vectors. Since these are at the same point the difference of the initial and final vectors can be measured immediately. .We have then by (83:2) 

SAu= (Aue — Anuar) dz, date, 

84, =4 / fe (Awe Ape) IS? occ. (33:3), 
where the summation convention is now restored. We have only proved this for an infinitesimal circuit occupying a coordinate-mesh, for which dS’ has only two non-vanishing components dz,da, and — dz,dz,. But the equation is seen to be a tensor-equation, and therefore holds independently of the coordinate-system; thus it applies to circuits of any shape, since we can always choose coordinates for which the circuit becomes a coordinate-mesh. But (33'3) is still restricted to infinitesimal circuits and there is no way of extending it to finite circuits—unlike Stokes’s theorem. The reason for this restriction is as follows— 
_ An tsolated vector A, may be taken at the starting point and carried by parallel displacement round the circuit, leading to a determinate value of 84,.
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In (33°3) this is expressed.in terms of derivatives of a vector-field A, extending 
throughout the region of integration. For a large circuit this would involve 
values of A, remote from the initial vector, which are obviously irrelevant to 
the calculation of 54,. It is rather remarkable that there should exist such 

a formula even for an infinitesimal circuit ; the fact is that although Aye — Azer 

ata point formally refers toa vector-field, its value turns out to depend solely 
on the isolated vector A, (see equation (34°3)). 

The contravariant vector dx,/ds gives a direction in the four-dimensional 
world which is interpreted as a velocity from the ordinary point of view which 
separates space and time. We shall usually call it a “velocity”; its connection 
with the usual three-dimensional vector (wu, v, w) is given by 

ar = 8 (u, v, w, 1), . 

where f is the FitzGerald factor dt/ds. The length (26:5) of a velocity is 

always unity. 
If we transfer dz,/ds continually along itself by parallel displacement we 

obtain a geodesic. For by (29-4) the condition for parallel displacement is 

0 (dix. dit, _ 

sas (ae) + fav, B} Ge =O 
Hence multiplying by dz,/ds 

  

  

which is the condition for a geodesic (28'5). Thus in the language used at 

the beginning of this section, a geodesic is a line in four dimensions whose 

direction undergoes.no absolute change. 

34. The Riemann-Christoffel tensor. 

The second covariant derivative of A, is found by inserting in (30°3) the 

value of A,, from (29°3). This gives 

Aveo gop (At — ter, o} Aa) — (ner oh (2 {ars} Ay) 
— {va, a} (4 — {1 } A.) 

a 0A, oA ’ 
— {pv, a} oes — {uc, a} on {vo, a} Ia. + {ve, a} {ua, e} A, 

f 

  

OA, 
Oe Oi, 

  

0 
+ {uo, a} {av, e} A.— A, aq, tm A} .eeceeceereeeeereeee (B41), 

The first five terms are unaltered when v and o are interchanged. The last 

two terms may be written, by changing the dummy suffix a to ¢ in the last 

term, 

A, ({us, a {av, €} ~ 5 {uv, d) .
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Hence 
, a a Ape — Apov = A, ({uo, a} {av, e}— am {uv, e} — {uv, a} {ac, e} tin {uc, dl) 

The rigorous quotient theorem shows that the co-factor of A, must be a tensor. 
Accordingly we write 

Ave — Apap =A, Boog sevecsecsesesecessvesee (343), 
where ‘ 5 5 

> Biro = {uo, a} fav, e} — {uv, a} fac, ¢} +5 {po, e} — das {uv, e} ...(84-4). 

This is called the Riemann-Christoffel tensor. It is only when this tensor 
vanishes that the order of covariant differentiation is permutable, 

The suffix « may be lowered. Thus 
ec 

Buvop = Joe Buvo 

a a =  {xo, a} Lav, p]—{yv, a} [ao, p] + 5a, HO P15 [x p] 
OA pa 09 pa ‘ “45 — {uo, a} an, {uv, a} Bong TT tteeeeeteeeeeeeees (34°45), 

where ¢ has been replaced by a in the last two terms, 
=— {uo, a} ley, a] + lens a} lee: 5 

"Joe Juv "One "Dov : +4 (se tank — ae ~ Eh) weccececenes (3845), 

by (27-5) and (27-1). 
Tt will be seen from (345) that Burp, besides being antisymmetrical in v 

and o, is also antisymmetrical in p and p. Also it is symmetrical for the double 
interchange and », p and cg. It has the further cyclic property 

Buvop + Bucov+ Bupre 0 cececcceseccceceseess (346), 
as is easily verified from (34°5). 

The general tensor of the fourth rank has 256 different components. Here 
the double antisymmetry reduces the number (apart from differences of sign) to 6x 6. 30 of these are paired because x, p can be interchanged with », ¢; but the remaining 6 components, in which #, p is the same pair of numbers as v, o, are without partners. This leaves 21 different components, between which (346) gives only one further relation. We conclude that the Riemann- 
Christoffel tensor has 20 independent components *. 

The Riemann-Christoffel tensor is derived solely from the g,, and there- fore belongs to the class of fundamental tensors. Usually we can form from any tensor a series of tensors of continually increasing rank by covariant 
* Writing the suffixes in the order “pov the following scheme gives 21 different components: 

1212 1223 1313 1334 1493 2323 2424 
1213 1224 1314 1384 1494 9394 2434 
1214 1234 1823 1414 1434 02334 3434 

with the relation 1234 — 1324414930, 
If we omit those containing the suffix 4, we are left with 6 components in three-dimensional space. In two dimensions there is only the one component 1212, 
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differentiation. But this process is frustrated in the case of the fundamental 
tensors because g,,¢ vanishes identically.. We have got round the gap and 
reached a fundamental tensor of the fourth rank. The series can now be con- 
tinued indefinitely by covariant differentiation. 

When the Riemann-Christoffel tensor vanishes, the differential equations 

0A 

  

Aw= a — {uv, a} Aa =O ooo cecceseeecee es (347) 

are integrable. For the integration will be possible if (847) makes dA, or 

0A dx, 
Ory, ~” 

a complete differential, i.e. if 
{uv, a} Aa de, 

is a complete differential. By the usual theory the condition for this is 
a 

we, (um, a}. Aa) — 52 ((uo, a} An) = 0, 
2 tava} — 2 OA a4, 

or Ag (a {uy, at — Ox, {uc, a}) + {uv, a} Ok, _— {us, a} a, 0. 

Substituting for 0A,/exo, 0A,/ox, from (34°7) 

Aa (5X (ur, @} —2e (uo, a} + (un a fae, e} ~ {uo a} fon, el) Av=O. 
Changing ‘the suffix « to ¢ in the first term, the condition becomes 

A Bray = 9. 

Accordingly when B;,,. vanishes, the differential dA, determined by (347) 
will be a complete differential, and 

| dA, 

between any two points will be independent of the path of integration. We 

can then carry the vector A, by parallel displacement to any point obtaining 

a unique result independent of the route of transfer. If a vector is displaced 

in this way all over the field, we obtain a uniform vector-field. 

This construction of a uniform vector-field is only possible when the 

Riemann-Christoffel tensor vanishes throughout. In other cases the equations 

have no complete integral, and can only be integrated along a particular route. 

E.g., we can prescribe a uniform direction at all points of a plane, but there is 

nothing analogous to a uniform direction over the surface of a sphere. 

Formulae analogous to (343) can be obtained for the second derivatives 

of a tensor A...,.. instead of for a vector A,. The result is easily found to be 

Avsipeve — Avene w= SBA sesgee saeeeeesenee (34°8), 

the summation being taken over all the suffixes y of the original tensor. 

The corresponding formulae for contravariant tensors follow at once, since 

the g*” behave as constants in covariant differentiation, and suffixes may be 

raised on both sides of (34°8).
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35. Miscellaneous formulae. 

The following are needed for subsequent use— 
Since ” Jug" =0 or 1, 

Gd gus + Jurdg** = 0. 
Hence 99? dur = — gusg”? dgi = — gPdgh® 

es AGF eee eeccececceecnsneneseeas (35:11). 
Similarly Aap = — Jua Gua dge” ..crecevecseccecceccncsceces (35°12). 
Multiplying by A, we have by the rule for lowering suffixes 

. AW? dgap = — (Jur gua?) dgu 
= — Ay dg =—Aggdg? ceecccscesssees (35:2). 

For any tensor Bg other than the fundamental tensor the corresponding formula would be 

AsB aBp = A,gd Be 

‘ by (268). The exception for Bag=gap arises because a change dg.g has an additional indirect effect through altering the operation of raising and lowering suffixes, 
Again dg is formed by taking the differential of each g,, and multiplying by its co-factor g.g#” in the determinant. Thus 

d 

’ 7 = gt” du, =— Gurdge” Ween ees ec cen cesectes 053)" 

The contracted 3-index symbol 

{uo, o} = 497A {ee + Gor _ pe} 
Ole ° OL, Oxy 

Oger = or LATA 
$9 OL ° 

The other two terms cancel by interchange of the dummy suffixes o and 2. Hence by (35:3) 
. . 1 ag {uo,-o} =o 

29 oz, 

~ OX, ; 
We use V—g because g is always negative for real coordinates. A possible pitfall in differentiating a summed expression should be noticed. The result of differentiating Au». With respect to a, is not Curt, but (@ur-+ yn) Z.. The method of performing such differentiations may be illus- trated by the following example. Let 

hy, = Any er Epkle, 
where a,, represents constant coefficients. Then 

oh vr OX, O25 , 
One ApyAge (= Le + aa, a) 

= GarWas (Fee + 92%,) by (22'8),
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Repeating the process, 
Oh, co, 

Sazday  Curter (92.9 + 929) 

= GayApr + ApgyGar- 

Hence changing dummy suffixes 

, Bains (py er ue) = Any Cert ey py seersceecesseee (35'5). 

Similarly if a,,. is symmetrical in its suffixes 
e 

Or, 0X, 025 

The pitfall arises from repeating a suffix three times in one term. In these 

formulae the summation applies to the repetition within the bracket, and not 
to the differentiation. . 

(pve Lp Ly) = Cys voveececsecsececes (35°6). 

Summary. 

Tensors are quantities obeying certain transformation laws. Their im- 
portance lies in the fact that if a tensor equation is found to hold for one . 
system of coordinates, it continues to hold when any transformation of 
coordinates is made. New tensors are recognised either by investigating 

their transformation laws directly or by the property that the sum, difference, 

product or quotient of tensors is a tensor. This is a generalisation of the 

method of dimensions in physics. 

The principal operations of the tensor calculus are addition, multiplication 

(outer and inner), summation (§ 22), contraction (§ 24), substitution (§ 25), 

raising and lowering suffixes (§ 26), covariant differentiation (§§ 29, 30). There 

is no operation of division; but an inconvenient factor g,, or g*” can’ be 

removed by multiplying through by g"7 or gy» so as to form the substitution- 

operator. The operation of summation is practically outside our control and 

always presents itself as a fait accompli. The most characteristic process of 

manipulation in this calculus is the free alteration of dummy suffixes (those 

appearing twice in a term); it is probably this process which presents most 

difficulty to the beginner. 

Of special interest are the fundamental tensors or world-tensors, of which we 

have discovered two, viz. 9,» and Byyop- The latter has been expressed in terms 

of the former and its first and second derivatives. It is through these that the 

gap between pure geometry and physics is bridged; in particular g,, relates 

the observed quantity ds to the mathematical coordinate specification dz,. 

Since in our work we generally deal with tensors, the reader may be led 

to overlook the rarity of this property. The juggling tricks which we seem 

to perform in our manipulations are only possible because the material used 

is of quite exceptional character. 

The further development of the tensor calculus will be resumed in § 48; 

but a stage has now been reached at which we may begin to apply it to the 

theory of gravitation.



CHAPTER IIT 

THE LAW OF GRAVITATION 

86. The condition for flat space-time. Natural coordinates. 
A region of the world is called flat or homaloidal if it is possible to 

construct in it a Galilean frame of reference. , ; 
It was shown in § 4 that when the g,, are constants, ds? can be reduced 

to the sum of four squares, and Galilean coordinates can be constructed. Thus 
an equivalent definition of flat space-time is that it is such that coordinates 
can be found for which the g,, are constants. 

When the g,, are constants the’3-index symbols all vanish; but since the 
3-index symbols do not form a tensor, they will not in general continue to 
vanish when other coordinates are substituted in the same flat region. Again, 
when the g,, are constants, the Riemann-Christoffel tensor, being composed 
of products and derivatives of the 3-index symbols, will vanish ; and since it 
is a tensor, it will continue to vanish when any other coordinate-system is 
substituted in the same region. 

Hence the vanishing of the Riemann- Christoffel tensor is a necessary condition 
for flat space-time. . - 

This condition is also sufficient—if the Riemann-Christoffel tensor vanishes 
space-time must be flat.. This can be proved as follows— , 

We have found (§ 34) that if . 
Bho =O ceeeeeeeceeeeee See eceeeseeenes (36-1), 

it is possible to construct a uniform vector-field by parallel displacement of 
"a vector all over the region. Let A(.) be four uniform vector-fields given by 
a=1, 2, 3, 4, so that , 

  

| (Aw@)o=0 
9Q- 0A (a) “4e, : or by (29 4) Ox = {eo, p} Aa) teeveccees tne eceeeeeeeee (86:2 le 

Note that a is not a tensor-suffix, but merely distinguishes the four inde- pendent vectors. ; oo 
We shall use these four uniform vector-fields to define a new coordinate- system distinguished by accents. Our unit mesh will be the hyperparallelo- piped contained by the four vectors at any point, and the complete mesh- system will be formed by successive parallel displacements of this unit mesh 

until the whole region is filled: One edge of the unit mesh, given in the old coordinates by , 
dz, = @) 

has to become in the new coordinates 
re “. dt,’'= (1, 0,.0, 0). 
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Similarly the second edge, dz, = A%s, must become da,’ =(0, I, 0, 0); ete. 
This requires the law of transformation 

Maly = Aa) Mila! vesececccccccsesserserseeeess (36°3). 
Of course, the construction of the accented coordinate-system depends on the 
possibility of constructing uniform vector-fields, and this depends on (36:1) 
being satisfied. 

Since ds? is an invariant 

J pata Azg’ = gy,dx,dz, 

Our Ala) Alp dra’darg’ by (36'3). 

Hence J op = Juv Alay Aig): 

Accordingly, by differentiatien, . 

a a oA‘ v 0A‘ v og v 

a = Jur Aie) Fart Iu ACe) am 2 + Ale AG) Bees     

e 

« y € y a y 

=— Juv A (a) A (ay feo, ¥} — Jur Ae (a) feo, wh + A Aw ae 
by (862). By changing dummy suffixes, this becomes 

Oq'. » 20» 
oa = Aiea) Aig) [- Jue (ve, e} — dev {ho, e} + oer] He 

Le 
  

= Ay Aty [Doe 1) — Loos 1+ Be 
=0 by (27-5). 

Hence the g’.a are constant throughout the region. We have thus constructed 

a coordinate-system fulfilling the condition that the g’s are constant, and it 

follows that the space-time is flat. 
_It will be seen that a uniform mesh-system, Le. one in which the unit 

meshes are connected with one another by parallel displacement, is neces- 

sarily a Cartesian system (rectangular or oblique). Uniformity in this sense 
is impossible in space-time for which the Riemann-Christoffel tensor does not 

vanish, e.g. there can be no uniform mesh-system on a sphere. 

When space-time is not flat we can introduce coordinates which will be 

approximately Galilean in’a small region round a selected point, the g,, being 

not constant but stationary there; this amounts to identifying the curved 
space-time with the osculating flat space-time for a small distance round the 
point. Expressing the procedure analytically, we choose coordinates such that 

the 40 derivatives 09,,/Ore vanish at the selected potnt. It is fairly obvious 
from general considerations that this will always be possible; but the following 
is a formal proof. Having transferred the origin to the selected point, make 

the following transformation: of coordinates 

By = Fi, — FOB, hy IGG Ui, vrceerisverseeees (36-4),
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where the value of the 3-index symbol at the origin is to be taken. Then at 
the origin 

  Oe Hc ccscessessessesessecsesscases 36-45), Fgh Je tees (86-45) 
Ox, 

On,’ Ox,’ — {aB, e} IaIp 

an, 3 ac. = — {aB, ¢} Tat are by (36°45). 

Hence by (31°3) fur, py’ oe =0. 
e 

‘ a € c c But {uv, p} = = {uy, p}’ 92 = {uv, ef’. 
‘p . 

Hence in the new coordinates the 3-index symbols vanish.at the origin ; 
and it follows by (27-4) and (27°5) that the first derivatives of the 9‘ wv Vanish, This is the preliminary transformation presupposed in § 4, 

We pass on to a somewhat more difficult transformation which is important 
as contributing an insight into the significance of Brive 

‘It is not possible to make the second derivatives of the g,, vanish at the selected point (as well as the first derivatives) unless the Riemann-Christoffel tensor vanishes there; but a great number of other special conditions can be imposed on the 100 second derivatives by choosing the coordinates suitably. Make an additional transformation of the form . 
Le Jule EAM yy Ay Wy Wal cerccecesecoccoceces. (365), where ajy. represents arbitrary coefficients symmetrical in #,v,o. This new transformation will not affect the first derivatives of the g,, at the origin, which have already been made to vanish by the previous transformation, but it alters the second derivatives, By differentiating (31-3), viz. 

. 10%,  OX_ Bas _ Ou, 
{uv, p} ding’ ~ Ba! Ba,’ 8 } =a ay 

we obtain at the origin . 
a , on, Sa (ny, py’ SB — Ot Ot Dery 0 fa, e} = 2 Oxy’ Ox, Oty’ Oxy tp! Ot, Oty” since the 3-index symbols themselves vanish. Hence by (86°5)* 

Q hoe Q ‘ Sn HY pl’. gS — InITe Bx, (8. ¢} = a, 
which reduces to o {uy, e}’ — = (HY, €} = deg ceeccccceseseee (36°55). 
The transformation (36°5) accordingly increases 0 {yy, e}/Ox, by at,,. Owing to the Symmetry of aj,., all three quantities 

a a a , az, {uv, e}, an, {uc, ¢}, ax, lve, ¢} 

* For the disappearance of the factor 4, see (35°6). 

i 
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are necessarily increased by the same amount. Now the unaltered difference 
a a . az, {uo, e} — aa, (uv, e} = Berg ccsscescseseneeces (36°6) 

since the remaining terms of (34°4) vanish in the coordinates here used. We 
cannot alter any of the components of the Riemann-Christoffel tensor; but, 
subject to this limitation, the alterations of the derivatives of the 3-index 
symbols are arbitrary. 

The most symmetrical way of imposing further conditions is to make a 
transformation such a 

a. a = {uv, e} + an, {uo, e} + am {vo,e}=0 oe (36-7). 

There are 80 different equations of this type, each of which fixes one of the 
80 arbitrary coefficients aj,~. In addition there are 20 independent equa- - 
tions of type (86°6) corresponding to the 20 independent components of the 
Riemann-Christoffel tensor. Thus we have just sufficient equations to deter- 
mine uniquely the 100 second derivatives of the g,,. Coordinates such that 
Qgur[Ot~¢ is zero and 0°9,,/0x,0x, satisfies (86°7) may be called canonical 
coordinates. 

By solving the 100 equations we obtain all the 3° oun/er9 de, for canonical 

coordinates. expressed as linear functions of the Baye. “7 

The two successive transformations which lead to canonical coordinates 

are combined in the formula 

Le = Inky —¥ {Uv, Cfo Xp’ ey 

-< las vo, €} + a g a, os $e {uv, | tara ...(36°8). 

At the origin ne Jane =9Jh, SO thet the transformation does not alter any 

tensor at the origin. For example, the law of transformation of C,,, gives 

0 
apy a se es = Cosy TI, 

= Caves 

The transformation in fact alters the curvature and hypercurvature of the 
axes passing through the origin, but does not alter the angles of intersection. 

Consider any tensor which contains only the Iuv and their first and second 

derivatives. In canonical coordinates the first derivatives vanish and the 

second derivatives are linear functions of the Bj,,;-hence the whole tensér is 

a function of the g,, and the Bi,,. But neither the tensor itself nor the Sus 

and Bi, have been altered in the reduction to canonical coordinates, hence 

the same functional relation holds true in the original unrestricted coordinates. 
We have thus the important result— 

The only fundamental tensors which do not contain derivatives of gu, beyond 
the second order are functions of gu, and B* Ho 

CO" wwe =
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This shows that our treatment of the tensors describing the character of 
space-time has been exhaustive as far as the second order. If for suitably 

chosen coordinates two surfaces have the same g,, and Bj,, at some point, 
they will be applicable to one another as far as cubes of the coordinates; the 
two tensors suffice to specify the whole metric round the point to this extent. 

Having made the first derivatives vanish, we ean by the linear transforma- 

tion explained in § 4 give the g,, Galilean values at the selected point. 
The coordinates so obtained are called natural coordinates at the point and 
quantities referred to these coordinates are said to be expressed in natural 
measure, Natural coordinates are thus equivalent to Galilean coordinates 
when only the g,, and their first derivatives are considered; the difference 
appears when we study phenomena involving the second derivatives. 

By making a Lorentz transformation (which leaves the coordinates still 
"a natural system) we can reduce to rest the material located at the point, or 

an observer supposed to be stationed with his measuring appliances at the 
point. The natural measure is then further particularised as the proper- 
measure of the material, or observer. It may be noticed that the material 
will be at rest both as regards velocity and acceleration (unless it is acted on 
by electromagnetic forcés) because there is no field of acceleration relative to 
natural coordinates. 

To sum up this discussion of special systems of coordinates.—When the 
Riemann-Christoffel tensor vanishes, we can adopt Galilean coordinates 
throughout the region. When it does not vanish we can adopt coordinates 
which agree with Galilean coordinates at a selected point in the values of the 
9» and their first derivatives but not in the second derivatives; these are 
called natural coordinates at the point. Either Galilean or natural coordinates 
can be subjected to Lorentz transformations, so that we can select a system with respect to which a particular observer is at rest; this system will be the proper-coordinates for that observer. Although we cannot in general make natural coordinates agree with Galilean coordinates in the second derivatives 
of the g,,, we can impose 80 partially arbitrary conditions on the 100 second derivatives; and when these conditions are selected as in (86°7) the resulting 
coordinates have been called canonical. oe 

There is another way of specialising coordinates which may be mentioned here for completeness. It is always possible to choose coordinates such that the, determinant g=—1 everywhere (as in Galilean coordinates), This is explained in § 49. 
We may also consider another class of specialised coordinates—those 

which are permissible in special problems. There are certain (non-Euclidean) 
coordinates found to be most convenient in dealing with the gravitational field of the sun, Hinstein’s or de Sitter’s curved world, and so on. It must be remembered, however, that these refer to idealised problems, and coordinate- systems with simple properties can only be approximately realised in nature.
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If possible a static system of coordinates is selected, the condition for this 
being that all the g,, are independent of one of the coordinates 2, (which 
must be of timelike character*). In that case the interval corresponding to 
any displacement dz, is independent of the “time” a. Such a system can, 
of course, only be found if the relative configuration of the attracting masses 
is maintained unaltered. If in addition it is possible to make gu, go» Js = 0 
the time will be reversible, and in particular the forward velocity of light 
along any track will be equal to the backward velocity; this renders the 
application of the name “ time” to 2, more just, since one of the alternative 

conventions of § 11 is satisfied. We shall if possible employ systems which 
are static and reversible in dealing with large regions of the world; problems 
in which this simplification is not permissible must generally be left aside as 
insoluble—e.g. the problem of two attracting bodies. For small regions of the 
world the greatest simplification is obtained by using natural coordinates. 

87. Hinstein’s law of gravitation. 

The contracted Riemann-Christoffel tensor is formed by setting e=o in 
Bie. It is denoted by G,,. Hence by (84-4) 

Cav (uo, a} {av, 0} — {ur a} {005 0} +5 (uo, o} ae {ung} ..87). 
¥ 

The symbols containing a duplicated suffix are simplified by (35:4), viz. 

{uo, o} =~ logV—g. 
Tp 

Hence, with some alterations of dummy suffixes, 

. o? — 0 Gav — ge {avs af + (ua, B} 98, a + 5a log V9 ~ {av, a} o-log Vg CX 

Bie = gt Buvop = 9; 

owing to the antisymmetry of By,cp in » and p. 

The law Gav = Ocvecscecersrccescsseeesssereeenes (37°3),. 

in empty space, is chosen by Einstein for his law of gravitation. 

We see from (87°2) that G,, is a symmetrical tensor; consequently the law 

provides 10 partial differential equations to determine the g,,. It will be found 

later (§ 52) that there are 4 identical relations between them, so that the 

number of equations is effectively reduced to 6. The equations are of the 

second order and involve the second differential coefficients of g,, linearly. We 

proved in § 36 that tensors not containing derivatives beyond the second must 

necessarily be compounded from gy» and Bf,,.; so that, unless we are prepared 

" * day will be timelike if gq, is always positive.
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to go beyond the second order, the choice of a law of gravitation is very limited, - 
and we can scarcely avoid relying on the tensor G,,*. ‘ 

Without introducing higher derivatives, which would seem out of place in 
this problem, we can suggest as an alternative to (37°3) the law 

Gv =AYur veveresere ateeeeceeescsesceselOU), 

where X is a universal constant. There are theoretical grounds for believing 
that this is actually the correct form; but it is certain that % must be an 
extremely small constant, so that in practical applications we still take (373) 
as sufficiently approximate. The introduction of the small constant leads to 
the spherical world of Einstein or de Sitter to which we shall return in 
Chapter V. 

‘The spur G = GP” Gy vec cececsevececencecenensesees (37°5) 

is called the Gaussian ‘curvature, or simply the curvature, of space-time. It 
must be remembered, however, that the deviation from flatness is described 

‘ in greater detail by the tensors G,, and B,,., (sometimes called components of 
curvature) and the vanishing of G is by no means a sufficient condition for flat 
space-time. 

Einstein’s law of gravitation expresses the fact that the geometry of’ an 

empty region of the world is not of the most general Riemannian type, but is 
limited. General Riemannian geometry corresponds to the quadratic form 
(2:1) with the g’s entirely unrestricted functions of the coordinates; Einstein 
asserts that the natural geometry of an empty region is not of so unlimited a 

-kind, and the possible values of the.g’s are restricted to those which satisfy 
the differential equations (37°3). It will be remembered that a field of force 
arises from the discrepancy between the natural geometry of a coordinate- 
system and the abstract Galilean geometry attributed to it; thus any law 
governing a field of force must be a law governing the natural geometry. 
That is why the law of gravitation must appear as a restriction on the pos- 

‘sible natural geometry of the world. The inverse-square law, which is a 
plausible law of weakening of a supposed absolute force, becomes quite unin- 
telligible (and indeed impossible) when expressed as a restriction on the 
intrinsic geometry of space-time; we have to substitute some law, obeyed 
by the tensors which describe the world-conditions determining the natural 
geometry. 

88. The gravitational field of an isolated particle. . 
We have now to determine a particular solution of the equations (37°3). 

The solution which we shall obtain will ultimately be shown to correspond to 
the field of an isolated particle continually at rest at the origin ; and in seeking 
a solution we shall be guided by our general idea of the type of solution to be 
expected for such a particle. This preliminary argument need not be rigorous; 

* The law Biyg)=0 (giving flat space-time throughout all empty regions) would obviously be 
too stringent, since it does not admit of the existence of irreducible fields of force.  
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the final test is whether the formulae suggested by it satisfy the equations 
to be solved. 

In flat space-time the interval, referred to spherical polar coordinates and 
time, is 

ds? = — dr? — r3d6? — r sin? Odd? + dt?.....e..c00 (38°11). 

If we consider what modifications of this can be made without destroying the 
spherical symmetry in space, the symmetry as regards past and future time, 
or the static condition, the most general possible form appears to be 

ds? = — U (r)dr?— V (r) (7° d@? +r sin? Odd") + W (r) dé ...(88°12), 

where U, V, W are arbitrary functions of r. Let 7 

; r= V(r). 

Then (38°12) becomes of the form 

ds? = — U, (r,) drf— r2d6? — v2 sin? 6d¢g? + Wy (7) dé? ...(38°13), 

where U, and 1, are arbitrary functions of 7. There is no reason to regard 

r in (38:12) as more immediately the counterpart of r in (38°11) than 7, is. If 

the functions U, V, W differ only slightly from unity, both r and 7, will have 

approximately the properties of the radius-vector in Euclidean geometry; but 

no length in non-Euclidean space can have exactly the properties of a Euclidean 

radius-vector, and it is arbitrary whether we choose r or 7 as its closest repre- 

sentative. We shall here choose 7,, and accordingly drop the suffix, writing 

(38°13) in the form 
ds? = — ehdr? — 72d 62 — 7 sin?OdG? + edi ...ceeseeee (38-2), 

wheré X and py are functions of r only. , 

Moreover since the gravitational field (or disturbance of flat space-time) . 

due toa particle diminishes indefinitely as we go to an infinite distance, we 

must have » and vy tend to zero as r tends to infinity. Formula (38:2) will 

then reduce to (38°11) at an infinite distance from the particle. 

Our coordinates are 
=r, %=9, B=d, %=t 

and the fundamental tensor is by (38-2) 
 gu=—- ey gu=—™, Js=—7 SID?7O, Gag =O woven (38°31), 

and Juv =0 if pH. 

The determinant g reduces to its leading diagonal 9nJuIJsGu. Hence 

, GHOSTING co ecccecceseeeenoee .+++.(38°32), 

and g™ = 1/gu, etc., 80 that 

g= - eA, g2=—1r, gi=—1fr sin? 6, ga e~”...(88°33). 

Since all the gt” vanish except when the two suffixes are the same, the 

summation disappears in the formula for the 3-index symbols (27-2), and : 

Jur, Gre Jus 
{uv, of} = 39°" 3a, +g - Be) not summed. 

> 
ae,
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If p, v, « denote different suffixes we get the following possible cases (the 
summation convention being suspended): 

Qe 
OX, 

ux 
Ox, 

Tom ah gr et 3 2 Clog gan) 

(eH, v} = — $9” 

, O9w 0 
(ur v= grr Slt d 5 (log gu) 
{Hiv, o}= 0 

It is now easy to go systematically through the 40 3-index symbols cal- 
culating the values of those which do not vanish. We obtain the following 
results, the accent denoting differentiation with respect tor: 

{11, lp= 30 
{12,.2} = 1/r 

(18, 8} = Ur 
. {14, 4} = dv’ a 
{22,1pJ=—re® Dea eeeeees (38'5). 
{23, 3} = cot 6 
{83, 1} =—rsin?Oe-A 

~ {88, 2} =—sin 6 cos 
{44,1} =he-ry 

The remaining 31 symbols vanish. Note that {21, 2} is the same as {12, 2 
These values must be substituted in (37-2). As there may be some pitfalls 

" in carrying this out, we shall first write out the equations (37:2) in full, omit- 
ting the terms (223 in number) which now obviously ‘vanish. 

Gy =—Z (11,1) + (11,1) (11,1) + (12, 9} {12,2} + (18,3) {18, 3} + {14, 4} (14, 4} 
+ palog V=G ~ (11, 1}2 tog —9% . 

Gu=— 2 29, 1} + 2 (22, 1} {21, 2} + {23, 3} (23, 3} +5 log VG 
By yp — {22, I} = log V—g, - 

Gs=—2 {33,1 ~ 5 (88, 2} +2 (83, 1) (81, 3} +2 {83, 2} (39, 3}. 
a Oy — {33, Ibs, Jog ¥ — 9 — (83, 2} <5 log V— 9g, 

Gua —Z (44, 1) +2 (44, 1) {41, 4} — (44, YArgV=9, 
Ga= {18 8} (28, 8} — (12, 9}.% log vy, 
The remaining components contain no surviving terms. 

}, ete. 

 



38,39 THE GRAVITATIONAL FIELD OF AN ISOLATED PARTICLE 85 

Substitute from (38:5) and (38°32) in these, and collect the terms. The 
equations to be satisfied become - 

Guy = hv" — ANd! bv AN Oneecccccceceeseccece, (38°61), 
Gn eA (L4 REY ANY) —1 0 cocccececccecess. (38-62), 
Gy= sin? O.e-(1 +497 (’—W))—sin?0=0 . ......(38°63), 
Gy =e” (— dn" 4 by’ — 4 V'/ry=0 veces (38°64), 
Gu= 20 eee (38°65). 

We may leave aside (38°63) which is a mere repetition of (38°62); then there 
are left three equations to be satisfied by A and v. From (88°61) and (38°64) 
we have X’=—»‘. Since \ and v are to vanish together at r= 00, this requires 
that 

. . A=—y, 

Then (38°62) becomes et (ltrr’)=1, 
Set e’ =, then y tro! =1, 

Hence, integrating, y=1- om ott beseenseessecescssesseeeses (38°7), 
where 2m is a constant of integration. 

It will be found that all three equations are satisfied by this solution. 
Accordingly, substituting e~* = e” = y in (38:2), 

ds? = — dr? — 19d @ — 7? sin? Odd? + ydt¥..cseeceese (38°8), 
where y = 1 — 2m/r, isa particular solution of Einstein’s gravitational equations 
G,,=0. The solution in this form was first obtained by Schwarzschild. 

39. Planetary orbits: 
According to (15:7) the track of a particle moving freely in the space-time 

given by (88°8) is determined by the equations of a geodesic (28°5), viz. 

  
  

dq 4 diy dary _ . | dst + {pr, aa ds ad | re (89°1). 

Taking first a= 2, the surviving terms are 
ax, da, dit, | ¢. di, da, da, dx, _ cast 118, hae ag tL Da Ge t 183 he ae =O 

or using (38°5) 6 2adras ; ig? 
2 ” > 

dst tz de de ~ 828i 8 (5) a (89-2). 
_ Choose coordinates so that the particle moves initially in the plane O=4-. 
Then d6/ds =0 and cos 6 =0 initially, so that d?0/ds*=0. The particle there- 
fore continues to move in this plane, and we may simplify the remaining * 
equations by putting @=42 throughout. The equations for a= 1, 3, 4 are 

_ found in like manner, viz. 

Spy (Efren rey (f= i605,
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¢ +2 ar a =O rececececccececeseeeees (39:32), 

ot +v' dn a =O eeeeeececeseceeaees «+.(39°33). 

The last two equations may be integrated immediately, giving _ 

OI ci cccsssensnnnnneneeseeseee (39°41), 

a HCO Oly ceccecececcesersceceees (39°42), 

where h and ¢ are constants of integration. ; 
Instead of troubling to integrate (39°31) we can use in place of it (38'S) 

which plays here the part of an integral of energy. It gives 

(Sy +r 3) my (GY Rd cesses (39°43), 
Eliminating dé and ds by means of (39°41) and (89-42) 

lj/hdr\? | h? ot a (sa8) PTSD sesssssseeeeeeeee (39°44), 
whence, multiplying through by ¥ or (1 —2m/r), 

hdr\? h? 2m 2m hh} 

(333) tte Ltt 
or writing 1/r =, 

du\? | c—1. Qn . (=) Fu OM oe eeceees (39'5), 

Differentiating with respect to ¢, and removing the factor , 

au m 
; ag? +u= Jat SMU... ccccccecccecccccccece (39°61), 

a . d: with EI vcccsssssssntesesscscnsnneen (39°62). 
Compare these with the equations of a Newtonian orbit 

du m , get Us pp cee desecseeeateeees (39°71) 

with - 28 be sesseeceeseseseseevaesee (39°72), 
In (39°61) the ratio of 3mu? to m/h? is 3h?u?, or by (39°62) 

: x 

dd\? 
3 (7 =) . 

For ordinary speeds this is an extremely small quantity—practically three 
times the square of the transverse velocity in terms of the velocity of light 
For example, this ratio for the earth is 00000003. In practical cases the extra 
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term in (39°61) will represent an almost inappreciable correction to the New- 
tonian orbit (39°71). 

Again in (39°62) and (39°72) the difference between ds and dé is equally 
insignificant, even if we were sure of what is meant by dé in the Newtonian 
theory. The proper-time for the body is ds, and it might perhaps be urged 
that d¢ in equation (39°72) is intended to refer to this; but on the other hand 
s cannot be used as a coordinate since ds is not a complete differential, and 
Newton's “time” is always assumed to be a coordinate. - 

Thus it appears that a particle moving in the field here discussed will 
behave as though it were under the influence of the Newtonian force exerted 
by a particle of gravitational mass m at the origin, the motion agreeing with 
the Newtonian theory to the order of accuracy for which that theory has been 
confirmed by observation. . 

By showing that our solution satisfies G,,=0, we have proved that it 
describes a possible state of the world which might be met with in nature 
under suitable conditions. By deducing the orbit of a particle, we have dis- 
covered how that state of the world would be recognised observationally if it 

did exist. In this way we conclude that the space-time field represented by 

(38°8) is the one which accompanies (or “is due to”) a particle of mass m at 

the origin. 
The gravitational mass m is the measure adopted in the Newtonian theory 

of the power of the particle in causing a field of acceleration around it, the 

units being here chosen so that the velocity of light and the constant of gravi- 

tation are both unity. It should be noticed that we have as yet given no 

reason to expect, that m in the present chapter has anything to do with the 

m introduced in § 12 to measure the inertial properties of the particle. 

For a circular orbit the Newtonian theory gives 

meer =vr, 

the constant of gravitation being unity. Applying this to the earth, v= 30 km. 

per sec. = 10-* in terms of the velocity of light, and r=15.10%km. Hence 

the mass m of the sun is approximately 15 kilometres. The mass of the earth 

is 1/300,000th of this, or about 5 millimetres*. 

More accurately, the mass of the sun, 1:99.10 grams, becomes in gravi- 

tational units 1°47 kilometres; and other masses are converted in a like 

proportion. _ 

* Objection is sometimes taken to the use of a centimetre as a unitof gravitational (i.e. 

gravitation-exerting) MASS j but the same objection would apply to the use of a gram, since the 

gram is properly a measure of a different property of the Particle, viz. its inertia. Our constant 

of integration m is clearly a length and the reader may, if he wishes to make this clear, call it 

the gravitational radius instead of the gravitational mass. But when it is realised that the gravi- 

tational radius in centimetres, the inertia in grams, and the energy in ergs, are merely measure- 

numbers in different codes of the same intrinsic quality of the particle, it seems unduly pedantic 

to insist on the older discrimination of these units which grew up on the assumption that they 

measured qualities which were radically
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40. The advance of perihelion. 

The equation (39°5) for the orbit of a planet can be integrated in terms 
of elliptic functions; but we obtain the astronomical results more directly by 
a method of successive approximation. We proceed from equation (39°61) 

oe +us a H+ BMU? oo. ccccccecececsocccces (40°1). 

Neglecting the small term 82mu?, the solution is 

u= 35 (1 +ecos($—2)) sete ene eee onan ences (40:2), 

as in Newtonian dynamics. The constants of integration, e and a, are the 
eccentricity and longitude of perihelion. 

Substitute this first approximation in the small term Siu’, then (40°1) 
becomes 

d*u m am mm! 3m dg t = Fat3 7. +6 5 ecos(p—a)+5 yea +cos 2(¢—=)) 

baeees (40°3). 
Of the additional terms the only one which can pruduce an effect within the 
range of observation is the term in cos(¢@—=); this is of the right period to 
produce a continually increasing effect by resonance. Remembering that the 
particular integral of ° 

2 

ie +u=Acosd 

is u=4Ad¢sin ¢, 
this term gives a part of w 

33 
th = Bo ep Sin(G—G) veeececcsceesseenes (40-4), 

which must be added to the complementary integral (40°2). Thus the second 
approximation is , 

Bless epans—) 
=F (1 +6 cos (¢ — 7 —85)), 

where da =3 Ez Diovvecccccerseccsscceccensncees (40°5), 

and (dsr)? is neglected, 
Whilst the planet moves through 1 revolution, the perihelion @ advances 

a fraction of a revolution equal to 

Sa 3m? 3m $ =a = aa) cb eecereceeesseecesesues (40°6), 

using the well-known equation of areas h? = ml =a (1—e). 
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Another form is obtained by using Kepler’s third law, 

m= (=F) a’, T ? 

oe 8a 1l277a? 
giving $e = EPA la ce (40°7), 

where T is the period, and the velocity of light c has been reinstated. 
This advance of the perihelion is appreciable in the case of the planet 

Mercury, and the predicted value is confirmed by observation. 
For a circular orbit we put dr/ds, d?r/ds = 0, so that (39°31) becomes 

dd\? dt\? —re (<2) zaeay([) = 
me (3) teey (a) 0. 

Whence (sy =herv'|r=hy'/r 

= mr, 

so that Kepler’s third law is accurately fulfilled. This result has no obser- 

vational significance, being merely a property of the particular definition of r 

here adopted. Slightly different coordinate-systems exist which might with 

equal right claim to correspond to polar coordinates in flat space-time and 

for these Kepler’s third law would no longer be exact. 
We have to be on our guard against results of this latter kind which would 

only be of interest if the radius-vector were a directly measured quantity in- 

stead of a conventional coordinate. The advance of perihelion is a phenomenon 

of « different category. Clearly the number of years required for an eccentric 

orbit to make a complete revolution returning to its original position is capable 

of observational test, unaffected by any convention used in defining the exact 

length of the radius-vector. 
For the four inner planets the following table gives the corrections to the 

centennial motion of perihelion predicted by Einstein’s theory: 

oa esa 

Mercury +42”9 +882 
Venus ‘++ 86 + 0°05 

Earth + 38 + 007 © 

Mars + 185 + 018 

The product eda is a better measure of the observable effect to be looked for, 

and the correction is only appreciable in the case of Mercury. After applying 

these corrections to e$a, the following discrepancies between theory and ob- 

servation remain in the secular changes of the elements of the inner planets, 

cand © being the inclination and the longitude of the node: 

eda ' &e sin 760, & 

Mercury —0"58+0729 —0"884033 +0746+034 +0738 4 0%54 

Venus) — Oll+ O17 + O214 O21 + O58 O12 + 0384 022 
Earth 000+ 009 + 002+ 0°07 vee ave — 022+ 018 

Mars + O51+ 0°23 + 0294 018 — O114+ O15 — OOLE 0:13
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The probable errors here given include errors of observation, and also errors 
in the theory due to uncertainty of the masses of the planets. The positive 
sign indicates excess of observed motion over theoretical motion *. . 

Einstein’s correction to the perihelion of Mercury has removed the prin- 
cipal discordance in the table, which on the Newtonian theory was nearly 30 
times the probable error. Of the 15 residuals 8 exceed the probable error, 
and 3 exceed twice the probable error—as nearly as possible the proper pro- 
portion. But whereas we should expect the greatest residual to be about 3 
times the probable error, the residual of the node of Venus is rather excessive 
at 44 times the probable error, and may perhaps be a genuine discordance. 
Einstein’s theory throws no light on the cause of this discordance. 

41. The deflection of light, 

For motion with the speed of light ds =0, so that by (39°62) h= 0, and 
the orbit (39°61) reduces to 

du 
age UH BMU oe eececccececnseeaeee (41:1). 

The track of a light-pulse is also given by a geodesic with ds =0 according to 
(15°8). Accordingly the orbit (41°1) gives the path of a ray of light. 

We integrate by successive approximation. Neglecting 3mu? the solution 
of the approximate equation 

  

Ou 
agi +u=0 

. . . cos is the straight line Us af oteteecesecseenes de eeeeeseeees (41:2). 

Substituting this in the small term 3mu?, we have 

@u 3m, 
age + & = Bs 008 p. 

A particular integral of this equation is 

h = a (cos* + 2 sin*¢), 

so that the complete second approximation is 

  

| | Us ose + 7 (cos? +2sin?d) ...... seteeeees (41°38). 
Multiply through by rR, 

R=rcosd + Rr cost g + 2r sin? d), 

or in rectangular coordinates, «=r cos d, Y=Prsin g, 

> mM a4 Qy3 . z=R-— TTR aN Ct ttt cee s esas eecanns 41:4), , BV@+y (414) 
* Newcomb, Astronomical Constants. His ‘results have been slightly corrected by using a modem value of the constant of precession in the above table; see de Sitter, Monthly Notices, vol. 76, p. 728, ,
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The second term measures the very slight deviation from the straight line 
x=, The asymptotes are found by taking y very large compared with 2, 
The equation then becomes 

a= R—(+ 2y), 
and the small angle between the asymptotes is (in circular measure) 

, 4m 
R . 

For a ray grazing the sun’s limb, m = 1-47 km., R = 697,000 km., so that the 

deflection should be 1°75, The observed values obtained by the British 
eclipse expeditions in 1919 were 

Sobral expedition 1-98 +012 

Principe expedition 1°61 + 0°30 : 

It has been explained in Space, Time and Gravitation that this deflection 
is double that which might have been predicted on the Newtonian theory. 
In this connection the following paradox has been remarked. Since the cur- 
vature of the light-track is doubled, the acceleration of the light at each point 
is double the Newtonian acceleration; whereas for a slowly moving object the 
acceleration is practically the same as the Newtonian acceleration. To a man 
in a lift descending with acceleration m/r* the tracks of ordinary particles will 
appear to be straight lines; but it looks as though it would require an accele- 

ration 2m/r? to straighten out the light-tracks. Does not this contradict the 

principle of equivalence ? 

The fallacy lies in a confusion between two meanings of the word “curva- 

ture.” The coordinate curvature obtained from the equation of the track (41°4) 

is not the geodesic curvature. The latter is the curvature with which the local 

observer—the man in the lift—is concerned. Consider the curved light-track ~ 

traversing the hummock corresponding to the sun’s field ; its curvature can be 

reckoned by projecting it either on the base of the hummock or on the tangent 

plane at any point. The curvatures of the two projections will generally be 

different. The projection into Euclidean coordinates (a, y) used in (41-4) is the 

projection on the base of the hummock; in applying the principle of equiva- 

lence the projection is on the tangent plane, since we consider a region of the 

curved world so small that it cannot be discriminated from its tangent plane. 

. 42. Displacement of the Fraunhofer lines. 

Consider a number of similar atoms vibrating at different points in the 

region. Let the atoms be momentarily at rest in our coordinate-system 

(r, 8, $,t). The test of similarity of the atoms is that corresponding intervals 

should be equal, and accordingly the interval of vibration of all the atoms will 

be the same. . 

Since the atoms are at rest we set dr, d0, dp = 0 in (88'8), so that 

Us? =? occ eccceecneeeecnecssereenes (42°1).
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Accordingly the times of vibration of the differently placed atoms will be 
inversely proportional to 4/y. . 

Our system of coordinates is a static system, that is to say the g,, do not 
change with the time. (An arbitrary coordinate-system has not generally this 
property; and further when we have to take account of two or more attracting 
bodies, it is in most cases impossible to find a strictly static system of coordi- 
nates.) Taking an observer at rest in the system (r, 6, ¢d, t) a wave emitted 
by one of the atoms will reach him at a certain time 8¢ after it leaves the 
atom; and owing to the static condition this time-lag remains constant for 
subsequent waves. Consequently the waves are received at the same time- 
periods as they are emitted. We are therefore able to compare the time-periods 
dt of the different atoms, by comparing the periods of the waves received from 
them, and can verify experimentally their dependence on the value of /v at 
the place where they were emitted. Naturally the most hopeful test is the 
comparison of the waves received from a solar and a terrestrial atom whose 

. periods should be in the ratio 1:00000212:1. F or wave-length 4000 A, this 
amounts to a relative displacement of 0°0082 A of the respective spectral 
lines. This displacement is believed to have been verified observationally, but 
the test is difficult and perhaps uncertain. The theory has been strikingly 
confirmed in the spectrum of the Companion of Sirius where the predicted 
displacement was 30 times larger. . 

The quantity dt is merely an auxiliary quantity introduced through the 
equation (38°8) which defines it. The fact that it is carried to us unchanged 
by light-waves is not of any physical interest, since dé was defined in such a way that this must happen. The absolute quantity ds, the interval of the vibration, is not carried to us unchanged, but becomes gradually modified as the waves take their course through the non-Euclidean space-time. It is in transmission through the solar system that the absolute difference is intro- duced into the waves, which the experiment hopes to detect, 

_The argument refers to similar atoms and the question remains whether, for example, a hydrogen atom on the sun is truly similar to a hydrogen atom on the earth. Strictly speaking it cannot be exactly similar because it is in a different kind of space-time, in which it would be impossible to make a finite structure exactly similar to one existing in the space-time near the earth. But if the interval of vibration of the hydrogen atom is modified by the kind of space-time in which it lies, the difference must be dependent on some invariant of the space-time. The simplest invariant which differs at the sun and the earth is the square of the length of the Riemann-Christoffel tensor, viz. _ 

Brive BE 
The value of this can be calculated from (88'S) by the method used in that section for calculating the G,,. The result i3 

ne 
48 3
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By consideration of dimensions it seems clear that the proportionate change 
of ds would be of the order 

ot? 
rs , 

where o is the radius of the atom; there does not scem to be any other length 
concerned. Fora comparison of solar and terrestrial atoms this would be about 
10-™. In any case it seems impossible to construct from the invariants of 
space-time a term which would compensate the predicted shift of the spectral 
lines, which is proportional to m/7. 

43. Isotropic coordinates. 

We can transform the expression for the interval (38°8) by making the 
substitution 

m 2 

- (a + a) Ty sseseecsesssscesssusseseaseasens (43-1), 
2 

so that | dr = (a - i) dr,, 

m\? m\3 

y=(1-35)/(1 +57) 
Then (38°8) becomes _ | 

ds? = — (1 + m/27,)* (dr + rd? + ry sin? Odd?) + ene dt? ...(48°2). 

The coordinates (7, 0, @) are called tsotropte polar coordinates. The cor- 
. responding isotropic rectangular coordinates are obtained by putting 

_g@=r,sin@cosd, y=r,sin@sing, z=r,cos0, 
giving 

ds?= — (1 + m]/2r,)! (da? + dy? +dz7)+ (amr dt? ...(43°3), 

with r= (e+ y? +2). ; 

This system has some advantages. For example, to obtain the motion of 

a light-pulse we set ds = 0 in (48°3). This gives 

da\?  /dy\?- _(—m/2rny ” 

(a) +(e) + Gi) “GF Br) 
At a distance r, from the origin the velocity of light is accordingly 

G—m/2r,) . 
(Lop m[Sr ttre (43°4) 

in all directions. For the original coordinates of (38'8) the velocity of light is 
not the same for the radial and transverse directions. 

Again in the isotropic system the coordinate length (/(dz? + dy? + dz?)) of 

a, small rod which is rigid (ds = constant) does not alter when the orientation 
of the rod is altered. This system of coordinates is naturally arrived at when 
we partition space by rigid scales or by light-triangulations in a small region, 
e.g. in terrestrial measurements. Since the ultimate measurements involved
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in any observation are carried out in a terrestrial laboratory we ought, strictly 
speaking, always to employ the isotropic system which conforms to assumptions 
made in.those measurements*. But on the earth the.quantity m/r is negligibly 
small, so that the two systems coalesce with one another and with Euclidean 
coordinates. Non-Euclidean geometry is only required in the theoretical part 
of the investigation—the laws of planetary motion and propagation of light 
through regions where m/r is not negligible; as soon as the light-waves have 
been safely steered into the terrestrial observatory, the need for non-Euclidean 
geometry is at an end, and the difference between the isotropic and non-isotropic . 
systems practically disappears. 

In either system the forward velocity of light along any line is equal to 
the backward velocity. Consequently the coordinate ¢ conforms to the con- 
vention (§ 11) that simultaneity may be determined by means of light-signals. 
If we have a clock at A and send a light-signal at time ¢, which reaches B 
and is immediately reflected so as to return to A at time t,’, the time of arrival 
at B will be 3 (t,+1t,’) just as in the special relativity theory. But the alter- 
native convention, that simultaneity can be determined by slow transport of 
chronometers, breaks down when there is a gravitational field. This is evident 
from § 42, since the time-rate of a clock will depend on its position in the field. 
In any case slow transport of a clock is unrealisable because of the acceleration 
which all objects must submit to. ; 

The isotropic system could have been found directly by seeking particular 
solutions of Hinstein’s equations having the form (88°12), or 

ds? =— edr* — e# (92d 62+ 1 sin? Odd?) + e” de}, 

where A, , v are functions of r, By the method of § 38, we find 

“oe A 2 ’ Ll ‘ 4 , a fe Gu = + aU +e p —7h + ge? — 30 y'— hav’ + dv? 

Gig = [IL + rp! + ber (v' —D’) + boty" +402 p! (uw +40 —A NY] -1 
Grog = Gg sin? 6 . 

a a 1 ’ , , ? Gyg=— er eae + 4o'p! — 10 +a] 

The others are zero. ; 
Owing to an identical relation between Gy, Gn and G,,, the vanishing of 

this tensor gives only two equations to determine the three unknowns d, fa 
There exists therefore an infinite series of particular solutions, differing 
according to the third equation between A, z, vy which is at our disposal. The 
two solutions hitherto considered are obtained by taking ~=0, and =p, | 
respectively. The same series of solutions is obtained in a simpler way by 
substituting arbitrary functions of r instead of r in (38°8). 

" * But the terrestrial laboratory is falling freely towards the sun, and is therefore accelerated 
relatively to the coordinates (z, y, z, t).
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The possibility of substituting any function of r for r without destroying 
the spherical symmetry is obvious from the fact that a coordinate is merely 
an identification-number; but analytically this possibility is bound up with 
the existence of an identical relation between Gy, G., and G,, which makes 
the equations too few to determine a unique solution. - 

This introduces us to a theorem of great consequence in our later work. 
If Einstein’s ten equations G,,=0 were all independent, the ten g,, would be 
uniquely determined by them (the boundary conditions being specified). The 
expression for ds? would be unique and no transformation of coordinates would 

be possible. Since we know that we can transform coordinates as we please, 

there must exist identical relations between the ten G,,; and these will be 

found in § 52. 

44. Problem of two bodies—Motion of tne moon. 

The field described by the g,, may be (artificially) divided into a field of 

pure inertia represented by the Galilean values, and a field of force repre- 

sented by the deviations of the g,, from the Galilean values. Itis not possible 

to superpose-the fields of force due to two attracting particles; because the 

sum of the two solutions will not satisfy G,., = 0, these equations being non- 

linear in the g,,. 

No solution of Einstein’s equations has yet been found for a field with two 

singularities or particles. The simplest case to be examined would be that of 

two equal particles revolving in circular orbits round their centre of mass. 

Apparently there should exist a statical solution with two equal singularities ; 

but the conditions at infinity would differ from those adopted for a single 

particle since the axes corresponding to the static solution constitute what is 

called a rotating system. The solution has not been found, and it is even 

possible that no such statical solution exists. I do not think it has yet been 

proved that two bodies can revolve without radiation of energy by gravitational 

waves. In discussions of this radiation problem there is a tendency to beg the 

question ; it is not sufficient to constrain the particles to revolve uniformly, 

then calculate the resulting gravitational waves, and verify that the radiation 

of gravitational energy across an infinite sphere is zero. That shows that a 

statical solution is not obviously inconsistent with. itself, but does not demon- 

strate its possibility. ; oO 

The problem of two bodies on Einstein’s theory remains an outstanding 

challenge to mathematicians—like the problem of three bodies on Newton's 

theory. oo, ; 

For practical purposes methods of approximation will suffice. We shall 

consider the problem of the field due to the-combined attractions of the earth 

and sun, and apply it to find the modifications of the moon’s orbit required by 

the new law of gravitation. The problem has been treated in considerable 

detail by de Sitter*. We shall not here attempt a complete survey of the 
* Monthly Notices, vol. 77, p. 155.



96 _ PROBLEM OF TWO BODIES—MOTION OF THE MOON CH. IIL 

problem ; but we shall seek out the largest effects to be looked for in refined 
observations. There are three sources of fresh perturbations: 

(1) The sun’s attraction is not accurately given by Newton’s law, and the 
solar perturbations of the moon’s orbit will require corrections. 

(2) Cross-terms between the sun’s and the earth’s fields of force wjll arise, 
since these are not additive. 

(8) The earth’s field is altered and would inter alia give rise to a motion 
of the lunar perigee analogous to the motion of Mercury’s perihelion. It is 
easily calculated that this is far too small to be detected. 

If 25, Og are the Newtonian potentials of the sun and earth, the leading 
terms of (1), (2), (8) will be relatively of order of magnitude 

0%, IsAs, Az. 

For the moon 2,=7502,. We may therefore confine attention to terms of 
- type (1). If these prove to be too small to be detected, the others will pre- 
sumably be not worth pursuing. 

We were able to work out the planetary orbits from Einstein’s law inde- 
pendently of the Newtonian theory; but in the problem of the moon’s motion 
we must concentrate attention on the difference between Einstein’s and New- 
ton’s formulae if we are to avoid repeating the whole labour of the classical 
lunar theory. In order to make this comparison we transform (39°31) and 
(39°32) so that ¢ is used as the independent variable. 

@  (dt\?d? dt d sdt\ d 
a= (a) det ae (a) 

dt\? /d? ,drd 

= (5) (GING ai) by (89-42), 
Hence the equations (39°31) and (89°32) become 

7 2 Pr gn’ (i) re“ (3) +e" =0, at” dt 

Po ,ar dd 2drdd _ 
ae a atrad” 

Gr do\?_ m Wh Zp (EP me ence de r( +taHk 

- (2b 2e a _e( (441), 

\d@ rdt at) = 

2Qm 2m? where R=-8)v— yy 
ec caaseees (44-21) 

D=— rw . 

and u=dr/dt, v=rdd/dt.
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Equations (441) show that R and ® are the radial and transverse per- 
turbing forces which Einstein’s theory adds to the classical dynamics. Toa 
sufficient approximation X’ = — 2m/r’, so that 

R =5 (31? — Qu?) + =a 

= 5 .2uu 

In three-dimensional problems the perturbing forces become 

=™ (gut 2 — Qu) 4 2 R nv 2v? — Qe?) + 

= Quy cane ee teeeeeees (4423). 

m 
Z= a Quw 

It’ must be pointed out that these perturbing forces are Einstein’s cor- 
rections to the law of central force m/r*, where r is the coordinate used in our 

previous work. Whether these forces represent the actual differences between 
Einstein’s and Newton’s laws depends on what Newton’s r is supposed: to 
signify. De Sitter, making a slightly different choice of r, obtains different 

expressions for R, P*. One cannot say that one set of perturbing forces 
rather than the other represents the difference from the older theory, because 
the older theory was not sufficiently explicit. The classical lunar theory 
has been worked out on the basis of the law m/r*; the ambiguous quantity r 
occurs in the results, and according as we have assigned to it one meaning or 
another, so we shall have to apply different corrections to those results. But 

the final comparison with observation does not depend on the choice. of the 

intermediary quantity r. 

Take fixed rectangular axes referred to the ecliptic with the sun as origin, 
and let ween eee ‘ 

(a, 0, 0) be the coordinates of the earth at the instant considered, 

(x, y, 2) the coordinates of the moon relative to the earth. 

Taking the earth’s orbit to be circular and treating the mass of the 1 moon 

as infinitesimal, the earth’s velocity will be (0, v, 0), where v?= m/a. 

To find the difference of the forces R, , Zon the moon and on the ear th, 

we differentiate (44°23) and set 

Sr=a, 3(u, v, w) = (da/dt, dy/dt, dz/dt), 

and, after the differentiation, 

r=a, (u,v, w)=(0, », 0). 

* Monthly Notices, vol. 76, p. 723, equations (53).
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The result will give the perturbing forces on the moon’s motion relative to 
the earth, viz. , 

_ 4ma Gmea 4m dy_  2mx_ 4m_ dy 
Oh en Og a dt at ai 

_ 2m dz ».(443), 
On a a 
Z=0 

We shall omit the term —2m*a/a‘ in X. It can be verified that it gives 
no important observable effects. It produces only an apparent distortion of 
the orbit attributable to our use of non-isotropic coordinates (§43). Trans- 
forming to new axes (£, 7) rotated through an angle @ with respect to (a, y) 
the remaining forces become 

oy 
B= Zo (—2c0s 0 sin 0S — (4 cost +2 sin? 6) 2) 

+ (44-4), _m - nan . dé H="0( 2 cos 0 sin 07) + (4sint @ + 2 cos* 4) 5) 

We keep the axes (§, 77) permanently fixed; the angle @ which gives the 
direction of the sun (the old axis of x) will change uniformly, and in the long 
run take all values with equal frequency independently of the moon’s position 
in its orbit. We can only hope to observe the secular effects of the small forces 
=, H, accumulated through a long period of time. Accordingly, averaging the 
trigonometrical functions, the secular terms are 

Bang my _ 9 
a dt dt | esses sesesssssees(44'3) 

Ha gy 9,4 a” dt dt 
where © = BMV A? ooo. .cccccsccsccscscnsceecees (44°6). 

If (F;, F,) is the Newtonian force, the equations of motion including these 
secular perturbing forces will be 

. a? adn 2 

Oe 4 ea Oh Pp, on _ 20% =F, vesseseeseee(447). 
It is easily seen that w is a very small quantity, so that w? is negligible 

The equations (44°7) are then recognised as the Newtonian equations referred 
to axes rotating with angular velocity —w. Thus if we take the Newtonian 
orbit and give it an angular velocity +, the result will be the solution of 
(44°77). The leading correction to the lunar theory obtained from Einstein’s 
equations is a precessional effect, indicating that the classical results refer to 
a frame of reference advancing with angular velocity w compared with the 
general inertial frame of the solar system. mo 

From this cause the moon’s node and perigee will advance with velocity 
», If 0 is the earth’s angular velocity
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Hence the advance of perigee and node in a century is 

37 .10-* radians = 1-94. 

We may notice the very simple theoretical relation that Einstein’s cor- 
rections cause an advance of the moon’s perigee which is one half the advance 
of the earth’s perihelion, | ; , 

Neither the lunar theory nor the observations are as yet carried quite far 
enough to take account of this small effect; but it is only a little below the 
limit of detection. The result agrees with de Sitter’s value except in the second 
decimal place which is only approximate. 

There are well-known irregular fluctuations in the moon’s longitude which 
attain rather large values; but it is generally considered that these are not 
of a type which can be explained by any amendment of gravitational theory 
and their origin must be looked for in other directions. At any rate Einstein’s 
theory throws no light on them. 

The advance of 1°94 per century has not exclusive reference to the 
moon; in fact the elements of the moon’s orbit do not appear in (44°6). It 

represents a property of the space surrounding the earth—a precession of the 

inertial frame in this region relative to the general inertial frame of the sidereal 

system. If the earth’s rotation could be accurately measured by Foucault's 

pendulum or by gyrostatic experiments, the result would differ from the 

rotation relative to the fixed stars by this amount. This result seems to have 

been first pointed out by J. A. Schouten. One of the difficulties most often 

urged against the relativity theory is that the earth’s rotation relative to the 

mean of the fixed stars appears to be an absolute quantity determinable by 

dynamical experiments on the earth*; it is therefore of interest to find that 

these two rotations are not exactly the same, and the earth’s rotation relative 

to the stellar system (supposed to agree with the general inertial frame of the 

universe) cannot be determined except by astronomical observations. 

The argument of the relativist is that the observed effect on Foucault's 

pendulum can be accounted for indifferently by a field of force or by rotation. 

The anti-relativist replies that the field of force is clearly a mathematical 

fiction, and the only possible physical cause must be absolute rotation. It is 

pointed out to him that nothing essential is gained by choosing the so-called 

non-rotating axes, because in any case the main part of the field of force 

remains, viz. terrestrial gravitation. He retorts that with his non-rotating 

axes he has succeeded in making the field of force vanish at infinity, so that 

the residuum is accounted for as a local disturbance by the earth; whereas, 

if axes fixed in the earth are admitted, the corresponding field of force becomes 

larger and larger as we recede from the earth, so that the relativist demands 

enormous forces in distant parts for which no physical cause can be assigned. 
Suppose, however, that the earth’s rotation were much slower than it is now, 

* Space, Time and Gravitation, p. 152. 

-
T
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and that Foucault’s experiment had indicated a rotation of only — 1-94 per 
century. Our two disputants on the cloud-bound planet would no doubt carry 
on a long argument as to whether this was essentially an absolute rotation of 
the earth in space, the irony of the situation being that the earth all the while - 
was non-rotating in the anti-relativist’s sense, and the proposed transformation 
to allow for the Foucault rotation would actually have the effect of introducing 

the enormous field of force in distant parts of space which was so much objected 
to. When the origin of the 1-94 has been traced as in the foregoing investi- 
gation, the anti-relativist who has been arguing that the observed effect is 
definitely caused by rotation, must change his position ,and maintain that it 
is definitely due to a gravitational perturbation exerted by the sun on Fou- 
cault’s pendulum; the relativist holds to his view that the two causes are not 
distinguishable. 

45. Solution for a particle in a curved world. - 

In later work Kinstein has adopted the more general equations (37°4) 

Gav = Of uy scvncccccscsscccecscescensenes (45:1). 
In this case we must modify (38°61), etc. by inserting ag,, on the right. We 
then obtain 

$v” — 400! +4029 - Nr eae occ cece (45°21), 

eA(1+br(v'-X))—-1l=—ar oo... (45°22), 

er (— dv" + 40/0! — hy? — v'/r) ak MEET ESTEE (45°28). 
From (45°21) and (45:23), ’=— vy’, so that we may take N=—v. An additive 
constant would merely amount to an alteration of the unit of time. Equation 
(45°22) then becomes 

mo, e’ (14+ rv’) =1-ar’, 

Let e’=y; then Y¥ + fy’ =1— ar 

which on integration gives 
2 . qy=1— = dor? oc... beseneseecessece (45°83). 

The only change is the substitution of this new value of y in (38°8). 
By. recalculating the few steps from‘ (39-44) to (89°61) we obtain the 

equation of the orbit 

du m | 1 
ade +u= it mu? — 5 a UF eo caccccceseees ++ (45-4). 

The effect of the new term in ais to give an additional motion of 
da lah’ laa: 
2m 3m -e Oo acc erccucenceceesns (45:5). 

Ata place where y vanishes there is an impassable barrier, since any change 
dr corresponds to an infinite distance ids surveyed. by measuring-rods, The 
two positive roots of the cubic (45°3) are approximately . 

r=2m and r=/(8/a). 

perihelion
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The first root would represent the boundary of the particle—if a genuine par- 

ticle could exist—and give it the appearance of impenetrability. The second 

barrier is at a very great distance and may be described as the horizon of the 

world. 
It is clear that the latter barrier (or illusion of a barrier) cannot be ata 

less distance than the most remote celestial objects observed, say 10% cm. 

This makes a less than 10-* (cm.)~. “Inserting this value (in 45:5) we find 

that the additional motion of perihelion will be well below the limit of obser- 

vational detection for all planets in the solar system*. 

If in (45°3),we set m= 0, we abolish the particle at the origin and obtain 

the solution for an entirely empty world - 

ds? = —(1 — far) dr? — °d® —r* sin? odg+ a- $00") dé. (45: 6). 

This will be further discussed in Chapter V. 

46. Transition to continuous matter. 

In the Newtonian theory of attractions the potential 2 in empty space 

satisfies the equation 
V20 =0, 

of which the elementary solution is Q= =m/jr; then bya well-known procedure 

we are able to deduce that in continuous matter 

V20 = — Aitpeessereees deseesenteeneees ..(46'1). 

We can apply the same principle to Einstein’s potentials g,,, which in 

empty space satisfy the equations G,,=0. The elementary solution has been 

found, and it remains to deduce the modification of the equations in continuous 

matter. The logical aspects of the transition from discrete particles to con- 

tinuous density need not be discussed here, since they are the same for both 

theories. 

When the square of m/r is neglected, the isotropic solution (48: 3) for a 

particle continually at rest becomes} _ e 

The particle need not be at » the origin provided that 7 is the distance from 

the particle’ to the point considered. 

Summing the fields of force of a number of particles, we obtain 

det =— (1+ 20) (dat + dy? + de’) + (1-20) ae (46-2), 

* This could scarcely have been asserted a few years ago, when it was ‘not known that the 

stars extended much beyond 1000 parsecs distance. A horizon distant 700 parsecs corresponds to 

a centennial motion of about 1” in the earth’s perihelion, and greater motion for the more 

distant planets in direct proportion to their periods. 

+ This approximation though sufficient for the present purpose is not good enough for a 

discussion of the perihelion of Mercury. The term in n?Jfr? in the coefficient of dé? would have to 

be retained. 
.
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where — | . 

7 oO => a= Newtonian potential at the point considered. 

The inaccuracy in neglecting the interference of the fields of the particles is 
of the same order as that due to the neglect of m*/r°, if the number of particles 
is not unduly large. 

‘Now calculate the G,, for the expression (46'2). We have 

C97 roe ( 29ur , Ope One - PI ov . 
Gur =9 * Buvop =i9" (ee + Ot Oa, 02, 0n, ant) ++(46'3) 

  

by (84°5). The non-linear terms are left out because they would involve 0? 
which is of the order (m/r)? already neglected. 

. The only terms which survive are those in which the g’s have like suffixes. 
Consider the last three terms in the bracket; for G,, they become 

V/ 20m or 00ers os Pn, ou TIu On #1) (0 Gar t9 Gm T° Gat +I" Gat 7" Fn 9" Gas) - 
Substituting for the g’s from (46-2) we find that the result vanishes (neglecting 
0). For G,, the result vanishes for a different reason, viz. because Q does not 
contain #,(=¢). Hence . : 

1 88g, . . Guy = 49? tah, =40g., as in (30°65)...(46-4). 

Since time is not involved |. O=—V4,_ 
- Gu, Gn, Gs, Gis = 4V? (Sus Joas Yas» as) 

. =V?0 by (462). 
Hence, making at this point the transition to continuous matter, 
Do Gu, Ger, Gs, Ga=—Amp — bY (AG'L).cceeeeececees (46-3). 

Also -- G= go” Gu» = — Gu — Gn — Gag + Gas. , 

= Sip 

  

to the same approximation. | 
Consider the tensor defined by 

— = 87 Dy = Gy — Apr GE. covcacceccsccceccesceee (46°6). 
We readily find Ly = 0, except Ty. =p, 
and raising the suffixes — : 

Ler =0, except T= p.iceccsseeees se eeeeeees (46'7), 
* since the g*” are Galilean to the order of approximation required. 

Consider the expression rises . dat, div, 
. * Po “ds. “ds. ’ ; 

where dz,/ds refers to the motion of the matter, and p, is the proper-density 
(an invariant), The matter is at rest in the coordinates hitherto used, and 
consequently 

dx, dz, daz, dx, 
as’ as’ ds 7% Gah
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so that all components of the expression vanish, except the component Hus 4: 
which is equal to py. Accordingly i in these coordinates 

Te "= ppt ay veeeseeeseseseneateceaeees (46°8), 

since the density p in (46°7) is clearly the proper-density. 
Now (46°8) is a tensor equation*, and since it has been verified for one set 

of coordinates it is true for all coordinate-systems. Equations (46'6) and (46°8) 
together give the extension of Einstein’s law of gravitation for a region con- 
taining continuous matter of proper-density p, and velocity dz,/ds. 

The question remains whether the neglect of m? causes any inaccuracy in 
these equations. In passing to continuous matter we diminish m for each 
particle indefinitely, but increase the number of particles in a given volume. 
To avoid increasing the number of particles we may diminish the volume, so 
that the formulae (46°5) will be true for the limiting case of a point inside a 
very small portion of continuous matter. Will the addition of surrounding 
matter in large quantities make any difference? This can contribute nothing 

directly to the tensor G,,, since so far as this surrounding matter is concerned 

the point is in empty space; but Einstein’s equations are non-linear and we 

must consider the possible cross-terms. : 

Draw a small sphere surrounding the point P which is being considered. 

Let gur= Sart Aus + hu», Where 5,, represents the Galilean values, and h,, and 

h',» represent the fields of force contributed independently by the matter in- 

ternal to and external to the sphere. By § 36 we can choose coordinates such 

that at P h’,, and its first derivatives vanish ; and by the symmetry of the 

sphere the first derivatives of, hy, vanish, whilst hy, itself tends to zero for an 

infinitely small sphere. Hence the cross-terms which are of the form 

, Oly, Ol or ORyy OP wy 
Ror * Ox, 0X’ Oxy Ox,’ . and her Ox. LOL, 

will all vanish at P. Accordingly with these limitations there are no ‘cross- 

terms, and the sum of the two solutions h,, and Py i is also a solution of the 

accurate equations. Hence the values (46°5) remain true. It will be seen that 

the limitation is that the coordinates must be “natural coordinates” at the 

point P. We have already paid I heed to this in taking p to be the proper- 

density. 
We have assumed that the matter at P is not accelerated with respect to 

these natural axes at P. (The original particles had to be continually at rest, 

otherwise the solution (46°15) does not apply.) If it were accelerated there 

would have to be a stress causing the acceleration. We shall find later that 

a stress contributes additional terms to the G,,. The formulae (46'5) apply 

only strictly when there is no stress and the continuous medium is specified 

by one variable only, viz. the density. ~ 

* When an equation is stated to be a tensor equation, the reader is expected to verify that the 

covariant dimensions of both sidea are the same. 
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The reader may feel that there is still some doubt as to the rigour of this 
justification of the neglect of m?*. Lest he attach too great importance to the 
matter, we may state at once that the subsequent developments will not be 
based on this investigation. In the next chapter we shall arrive at the same 
formulae by a different line of argument, and proceed in the reverse direction 
from the laws of continuous matter to the particular case of an isolated 
particle. ; 

The equation (46:2) is a useful expression for the gravitational field due 
to a static distribution of mass. It is only a first approximation correct to the 
order m/r, but no second approximation exists except in the case of a solitary 
particle. This is because when more than one particle is present accelerations 
necessarily occur, so that there cannot be an exact solution of Einstein’s 
equations corresponding to a number of particles continually at rest. It follows 
that any constraint which could keep them at rest must necessarily be of such — 
a nature as to contribute a gravitational field on its own account. 

‘It will be useful to give the values of G,,—49,.G corresponding to the 
symmetrical formula for the interval (38:2). By varying » and pv this can repre- 
sent any distribution of continuous matter with spherical symmetry. We have 

Gs—eA(y" — 30 + hy? 42 (v —N)/rt+ 2 (1 —e)/2") 

Gnu —tgnG=-v/r-(l—e)/r . 

Goa — 3.920G = — r2e~* (fv —40'y' + bv? +3(' —2')fr) 
Gs — $923 G = — 7 sin* Oe (Av —40'v' + by +40 —VY)i 

Gu-dguG= eh (—N/r+(1 —e)/r) , 
47. Experiment and deductive theory. 

So far as I am aware, the following is a complete list of the postulates 
which have been introduced into our mathematical theory up to the present 
stage: 

1, The fundamental hypothesis of § 1. 
2. The interval depends on a quadratic function of four coordinate- 

differences (§ 2). 
3. The path of a freely moving particle is in all circumstances a geodesic 

(§ 15). | 3 
4, The track of a light-wave is a geodesic with ds =0 (§ 15). 
5. The law of gravitation for empty space is G,,=0, or more probably 

Guy = AGuy, Where X is a very small constant (§ 37). 
* To illustrate the difficulty, what exactly does pg mean, assuming that it is not defined by 

(46-6) and (46°7)? If the particles do not interfere with each other's fields, pg is Zn per unit volume; but if we take account of the interference, m is undefined—it is the constant of integra- 
tion of an equation which does not apply. Mathematically, we cannot say what m would have been if the other particles had been removed 3 the question is nonsensical. Physically we could 
no doubt say what would have been the masses of the atoms if widely separated from one another, and compare them with the gravitational power of the atoms under actual conditions; but that involves laws of atomic structure which are quite outside the scope of the argument. 

(46'9).
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No. £ includes the identification of the velocity of light with the funda- 
mental velocity, which was originally introduced as a separate postulate in § 6. 

In the mathematical theory we have two objects before us—to examine 

how we may test the truth of these postulates, and to discover how the laws 

which they express originate in the structure of the world. We cannot neglect 

either of these aims; and perhaps an ideal logical discussion would be divided 

into two parts, the one showing the gradual ascent from experimental evidence 

to the finally adopted specification of the structure of the world, the other 

starting with this specification and deducing all observational phenomena. 

The latter part is specially attractive to the mathematician for the proof may 

be made rigorous; whereas at each stage in the ascent some new inference or 

generalisation is introduced which, however plausible, can scarcely be con- 

sidered incontrovertible. We can show that a certain structure will explain 

all the phenomena; we cannot show that nothing else will. 

We may put to the experiments three questions in crescendo. Do they 

verify? Do they suggest? Do they (within certain limitations) compel the 

laws we adopt? It is when the last question is put that the difficulty arises 

for there are always limitations which will embarrass the mathematician who 

wishes to keep strictly to rigorous inference. What, for example, does experi- 

ment enable us to assert with regard to the gravitational field of a particle 

(the other four postulates being granted)? Firstly, we are probably justified 

in assuming that the interval can be expressed in the form (38-2), and experi- 

ment shows that » and v tend to zero at great distances. Provided that e* and 

e” are simple functions it will be possible to expand the coefficients in the form 

r dst=— Q +44 a) drt — 8 d6*— 1 sint dg? + (1shs BeBe...) ae 

Now reference to §§ 39, 40, 41 enables us to decide the following points : 

(1) The Newtonian law of gravitation shows that }, = —2m. 

(2) The observed deflection of light then shows that a, = — 2m. 

(3) The motion of perihelion of Mercury then shows that b,=0. 

The last two coefficients are not determined experimentally with any high 

accuracy ; and we have no experimental knowledge of the higher coefiicients. 

If the higher coefficients are zero we can proceed to deduce that this field 

satisfies Gy, = 9. 
a 

If small concessions are made, the case for the law G,,=0 can be 

strengthened. Thus if only one linear constant m is involved in the specifi- 

cation of the field, b; must contain m’, and the corresponding term is of order 

(mjr), an extremely small quantity. Whatever the higher coefficients may 

be, G,, will then vanish to a very high order of approximation. 

Turning to the other object of our inquiry, we have yet to explain how 

these five laws originate in the structure of the world. In the next chapter 

we shall be concerned mainly with Nos. 3 and 5, which are not independent



106 EXPERIMENT AND DEDUCTIVE THEORY CH. III 47 

of one another. They will be replaced by a broader principle which contains 
them both and is of a more axiomatic character. No. 4 will be traced to its 
origin in the electromagnetic theory of Chapter VI. Finally a synthesis of 
these-together with Nos. 1 and 2 will be attempted in the closing chapter. 

The following forward references will enable the reader to trace exactly 
what becomes of these postulates in the subsequent advance towards more 
primitive conceptions: 

Nos. 1 and 2 are not further considered until § 97. 
No. 3 is obtained directly from the law of gravitation in § 56. — 
No. 4 is obtained from the electromagnetic equations in § 74, These are 

traced to their origin in § 96. o 
No. 5 is obtained from the principle of identification in § 54, and more 

completely from the principle of measurement in § 66. The possibility of 
alternative laws is discussed in § 62. 

In the last century the ideal explanation of the phenomena of nature con- 
sisted in the construction of a mechanical model, which would act in the way 
observed. Whatever may be the practical helpfulness of a model, it is no 
longer recognised as contributing in any way to an ultimate explanation. A 
little later, the standpoint was reached that on carrying the analysis as far as 
possible we must ultimately come to a set of differential equations of which 
further explanation is impossible. We can then trace the modus operandi, but as regards ultimate causes we have to confess that “things happen so, because 
the world was made in that way.” But in the kinetic theory of gases and in thermodynamics we have laws which can be explained much more satisfactorily. 
The principal laws of gases hold, not because a gas is made “that way,” but because it is made “just anyhow.” This is perhaps not to be taken quite literally; but if we could see that there was the same inevitability in Max- well’s laws and in the law of gravitation that there is in the laws of gases, we 
should have reached an explanation far more complete than an ultimate arbi- trary differential equation. This suggests striving for an ideal—to show, not that the laws of nature come from a special construction of the ultimate basis of everything, but that the same laws of nature would prevail for the widest possible variety of structure of that basis. The complete ideal is probably unattainable and certainly unattained ; nevertheless we shall be influenced by it in our discussion, and it appears that considerable progress in this direction is possible.



CHAPTER IV 

_ RELATIVITY MECHANICS 

48. The antisymmetrical tensor of the fourth rank. 

A tensor dA,, is said to be antisymmetrical if 

Ay=— Ap. 

It follows that A,,=— Ay, so that-Ay, An, Ass, Ay must all be zero. 

Consider a tensor of the fourth rank +875 which is antisymmetrical for 

all pairs of suffixes, Any component with two suffixes alike must be zero, 

since by the rule of antisymmetry E-8u = — F281, In the surviving com- 

ponents, a, 8, 7, 6, being all different, must stand for the numbers I, 2, 3, 4 

in arbitrary order. We can pass from any of these components to E™ by a 

series of interchanges of the suffixes in pairs, and each interchange merely 

reverses the sign. Writing E for £'™, all the 256 components have one or 

other of the values 
a , +£, 0, -&£. ; . 

We shall write 2 EBLE = Ty baggy cscs ec eceeeereeeeneeraeees (48'1), 

where a , . 

€asys= 0, when the suffixes are not all different, 

= +1, when they can be brought to the order 1, 2, 3, 4 by an even 

* number of interchanges, 

= —1, when an odd number of interchanges is needed. 

It will appear later that H is not an invariant; consequently eagys 18 not 

atensor.  * 

The coefficient ¢as,s is particularly useful for dealing with determinants. 

If | ku»| denotes the determinant formed with the elements ky, (which need 

not form'a tensor), we have : 

‘ . 41x | Ky | = Eapyd €eon8 kar Kee heyy kesq ec eesccccccceee (48:2) 

because the terms of the determinant are obtained by selecting four elements, 

one from each row (4, B,¥, 5, all different) and also from each column (¢, £, 7, 6, 

all different) and affixing the + or — sign to the product according as the 

order of the columns is brought into the order of the rows by an even or odd 

number of interchanges. The factor 4! appears because every possible per- 

mutation of the same four elements is included separately in the summation 

“on the right. Co — 

It is possible by corresponding formulae to define and manipulate deter- - 

minants in three dimensions (with 64 elements arranged in a cube) or in 

four dimensions. 

Note that == “€apys Copy =A! ween desseeesececenes seeess(48'81).
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The determinants with which we are most concerned are the fundamental 
determinant g and the Jacobian of a transformation 

J= O(a’, Xo’, Ls, X,) . 

O (21, Lo, Ls, Xs) 

By (48:2) 41 9 = €aays Cogn Jae JRL Jon J80  <rvecececscscncsees (48°32), 

Oa, Omg’ Oatq' O26 
4aiJ= €a3¥8 fegna Qare Baa da, Oars ee ecccenscceees (48°33). 

To illustrate the manipulations we shall prove that* 

oo, g=Jd%g'. 
By (48°32) and (48°33) 

. 20! One Oz One 
Aly d49 J2g = Saas €egn0 aed ecg’ mJ 89+ Cex dy Evfour A on, See aa, a . 

0x4! Oa,’ Bary’ Ox, . 
+ Sporv Sbxbu Be in, Ba, Ou, Oa, (48°41). 

There are about 280 billion terms on the right, and we proceed to rearrange 
those which do not vanish. 

For non-vanishing terms the letters v, &, 0, a denote the same suffixes ¢ as 
a, 8, 7, 5, but (usually) in a different order. Pérmute the four factors in which 
they occur so that they come into-the same order; the suffixes of the de- 
nominators will then come into a new order, say, t, k, l,m. Thus 

Oxy Oxy OL Oly a Ota Oxy Ox,’ Ox" 

OX, Ok_ OX). 0%, OX; Oty OX, Olm 

Since the number of interchanges of the denominators is the same as the 
number of interchanges of the numerators 

. . Svtow yy mm Sek: 

Capys €ikln 

so that the result of the transposition is , 

sesanbeseeeeececesasens (48-43), 

. Ox,’ O24! Ox Ota Oat, Oang' O20," Ons . 
CaBy8 Cicau “ae, oe ea On, = vfour Ekim F ti By ay On, Bin -+-(48°5), 

roe, . _ » etki stow Eviowr Eretu Eayyu Edyers 

/92. oo, rm oe 

Hence (41) Ji *g' = =(4 Ne, €ikim Erstu Yin Ges Jit Joss 

sO - =(41)°9, 
which proves the theorem.
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Returning to E678, its tensor-transformation law is 

| ererers 
OLq OXg Oly Ox” 

Whence multiplying by e..; and using (48°1) , 

ay! Qe Ba! 
QLa Oxp_ Oxy Ox,’ 

E'avor = Babys   

  

, 

ee yoM > Epvor Epver = E . €agys Exvor 

so that by (48°31) and (48°33) 
Bl HITE cccccsesesccccansssennsesesees (486). 

Thus Z is not an invariant for transformations of coordinates. 

Again -  Eatr8 BH? 9,. 95¢ Gm G0 
is seen by inspection to be an invariant. But this is equal to 

EB? eagys €egno Jae IBS Jn Jo0 
= 41 Bg, . 

Hence Eg is an invariant ........sscccceeeeeerees (48°65). | 

Accordingly E%g = Eg’ =(EJyg', by (48'6) 

giving another proof that TAG ceeceeenseseees beeeeteeeeans (48°7). 

Corollary. If a is the determinant formed from the components dy, of 

any covariant tensor, La is an invariant and’ 

WHT cesesesesees sesveneensseseees (488). 

49. ‘Element of volume. Tensor-density. 

In § 32 we found that the surface-element corresponding to the parallelo- 

gram contained by two displacements, 3,¢4, So, is the antisymmetrical tensor 

perenne dS =: 8,2,, 42, | 

. by 5.8, 

Similarly we define the volume-element (four-dimensional) corresponding to 

the hyperparallelopiped. contained by four displacements, 8,74, 5224, 830, O4%u, 

as the tensor 

dVerer =| Say, 8:2, S1he, Shy | coreeevers (49°). 

, “| Seam, 5yLy, 8X, S2Xz 

S322, S32, Ss%e, 85%r 

82h, Sy, 5420, & 2+ 

Tt will be seen that the determinant is an antisymmetrical tensor of the fourth 

rank, and its 256 components accordingly have one or other of the three values 

+dV, 0, --dV, — 

where dV=+dV"™, It follows from (48°65) that (dV)*g is an invariant, so 

that , 
- vi —g- AV is an invariant ....cccsrcscvees se2-(49°2),
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Since the sign of dV is associated with some particular cycle of 
enumeration of the edges of the parallelopiped, which is not usually of any 
importance, the single positive quantity dV is usually taken to represent the 
volume-element fully. Summing a number of infinitesimal .volume-elements, 
we have 

. . | [f[[[v=9- dV is an invariant ......scscceseeeee (49°3), 

the integral being taken over any region defined independently of the coordinates 7 De ekseee ieee 

When the quadruple integral is regarded as the limit of a sum, the infini- 
tesimal parallelopipeds may be taken of any shape and orientation; but for 
analytical integration we choose them to be coincident with meshes of the 
coordinate-system that is being used, viz. 

51% = (dx, 0,0, 0); dm =(0, dm, 0, 0); ete. 

. aV= dx, dx,dax,dx,. 

We write dr for the volume-element when chosen in this way, so that 

dr=dz,dz,d2,dx%. 

Tt is not usually necessary to discriminate between dr and the more 
general expression dV; and we shall usually regard V —g.dr as an invariant. 
Strictly speaking we mean that /—g.dr behaves as an invariant in volume- 
integration; whereas V —g.dV is intrinsically invariant. 

For Galilean coordinates 2, y, z, t, we have V —9 =1, so that 

MV = gdr=dadydzdt wiscccccccscccscsessee (49°41). 
Further if we take an observer at rest in this Galilean system, dxdydz is his 
element of proper-volume (three-dimensional) dW, and d¢ is his proper-time 
ds. Hence . 

M = Gdr =AWAS v.cccccsccccssesseeceees (49°42), 
By (49°41) we see that W—gdr is the volume in natural measure of the 

four-dimensional element. This natural or invariant volume is a physical 
conception—the result of physical measures made with unconstrained scales ; 
it may be contrasted with the geometrical volume dV or dz, which expresses 
the number of unit meshes contained in the region. 

Let T be a scalar, ie. an invariant function of position; then, since 
TN —gdV is an invariant, 

| TV — gdr is an invariant 

for any absolutely defined four-dimensional region. Each unit mesh (whose 
edges dx, dx,, dats, dx, are unity) contributes the amount TV—g to this
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invariant. Accordingly we call T¥—g the scalar-density* or invariant- 
density. , 

A nearly similar result is obtained for tensors. The integral 

[6 V—gdr 

over an absolutely defined region is not a tensor; because, although it is the 
sum of a number of tensors, these tensors are not located at the same point 
and cannot be combined (§ 33). But in the limit as the region is made 
infinitely small its transformation law approaches more and more nearly that 

of a single tensor. Thus 7+ V— g is a tensor-density, representing the amount 
per unit mesh of a tensor in the infinitesimal region round the point. 

It is usual to represent the tensor-density corresponding to any tensor by 

the corresponding German letter; thus 
Tor = Tor G3 GE DTNVAHY wececsssccsevsees (49°5). 

By (48:1) G8 = Es Vg = EV— G. capys, . 
and since EV —qg is an invariant it follows that easys is a tensor-density. 

Physical quantities are of two main kinds, e.g. 

Field of acceleration = intensity of some condition at a point, 

Momentum = quantity of something in a volume, 

The latter kind are naturally expressed as “so much per unit mesh.” Hence 

intensity is naturally described by a tensor, and quantity by a tensor-density. 

We shall find V—g continually appearing in our formulae; that is an indica- 

tion that the physical quantities concerned are strictly tensor-densities rather 

than tensors. In the general theory tensor-densities are at least as important 

as tensors. . 

We can only speak of the amount of momentum in a large volume when 

a definite system of coordinates has been fixed. The total momentum is the 

sum of the momenta in different elements of volume; and for each element 

there will be different coefficients of transformation, when a change of coordi- 

nates is made. The only case in which we can state the amount of something 

in a large region without fixing a special system of coordinates is when we 

are dealing with an invariant; e.g. the amount of “ Action” in a large region 

is independent of the coordinates. In short, tensor-analysis (except in the 

degenerate case of invariants) deals with things located at a point and not 

spread over a large region; that is why we usually have to use densities 

instead of quantities. oo 

Alternatively we can express a physical quantity of the second kind as 

“so much per unit natural volume (V—gdr)”; it is then represented by a 

* I have usually avoided the superfluous word “scalar,” which is less expressive than its 

synonym “invariant.” But it is convenient here in order to avoid confusion between the density 

of an invariant and a density which is invariant. The latter, pp, has hitherto been called the 

invariant density (without the hyphen). , -
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tensor. From the physical point of view it is perhaps as rational to express 
it in this way, as to express it by a tensor-density “so much per unit mesh 
(dr).” But analytically this is a somewhat hybrid procedure, because we seem 
to be employing simultaneously two systems of coordinates, the one openly 
for measuring the physical quantity, the other (a natural system) implicitly 
for measuring the volume containing it. It cannot be considered wrong in a 
physical sense to represent quantities of the second kind by tensors; but the 

analysis exposes our sub-conscious reference to V—g dr, by the repeated 
appearance of V—g in the formulae. 

In any kind of space-time it is possible to choose coordinates such that 

Vv—g=1 everywhere; for if three of the systems of partitions have been 
drawn arbitrarily, the fourth can be drawn so as to intercept meshes all of 
equal natural volume. In such coordinates tensors and tensor-densities become 
equivalent, and the algebra may be simplified; but although this simplifica- 
tion does not involve any loss of generality, it is liable to obscure the deeper 
significance of the theory, and it is not usually desirable to adopt it. 

50. The problem of the rotating disc. 

We may consider at this point a problem of some historic interest— 
A dise made of homogeneous incompressible material is caused to rotate 

with angular velocity #; to find the alteration in length of the radius. 
The old paradox associated with this problem—that the circumference 

moving longitudinally might be expected to contract, whilst the radius moving 

transversely is unaltered—no longer troubles us*. But the general theory of 
relativity gives a quantitative answer to the problem, which was first obtained 
by Lorentz by a method different from that given here. 

We must first have a clear understanding of what is meant by the word 
incompressible. Let us isolate an element of the rotating disc, and refer it to 
axes with respect to which it has no velocity or acceleration (proper-measure) ; 
then except for the fact that it is under stress due to the cohesive forces of 
surrounding matter, it is relatively i in the same state as an element of the 
non-rotating disc referred to fixed axes. Now the meaning of incompressible 
is that no stress-system can make any difference in the closeness of packing 
of the molecules; hence the particle-density o (referred to proper-measure) 
is the same as for an element of the non-rotating disc. But the particle- 
density o’ referred to axes fixed in space may be different, 

We might write down at once by (141) 

ol o(1 —w 7-3, 

since wr is the velocity of the element. This would in fact give the right 
result. But in § 14 acceleration was not taken into account and we ought to 

* Space, Time and Gravitation, p. 75. t Nature, vol. 106, p. 795,
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proceed more rigorously. We use’ the accented coordinates of §15 for our 
rotating system, and easily calculate from (15°4) that , 

V=j=1, 
and since ay’, 7’, 2; are constant for an element of the disc, the proper-time 

ds =A(1 — o? (a? + 227)) day. 

If dW is the proper-volume of the element, by (49°42) 

dWds=V—9! .dejdejdajda,. 
Hence dW =(1 — ow? (@2+ ar,'2)) 4 dax/dajdxs 

= (1 — wr)" 3 r'dr'd@'day. 

If the thickness of the disc is 52,’/=0, and its boundary is given by r’=a’, 

- the total number of particles in the dise will be 

N= { od W =2nob I * (1 — wr’) Badr’, 
0 

Since this number is unaltered by the rotation, a’ must be a function of 

such that 
a 

| (1 — wr’) 2 dr’ = const, 0 

or = (1 —/(. — wa?)) = const. 

Expanding the square-root, this gives approximately 

4a7(1 +40%a”) = const, 

so that if @ is the radius of the disc at rest 

a’ (1+4'a") =a, 

Hence to the same approximation 

a’ =a(1—}o°a’*). 

Note that a’ is the radius of the rotating disc according to measurement with 

fixed scales, since the rotating and non-rotating coordinates have been con- 

nected by the elementary transformation (15°83). 

We see that‘the contraction is one quarter of that predicted by a crude 

application of the FitzGerald formula to the circumference. 

“51. The divergence of a tensor. 

In the elementary theory of vectors the divergence 

oX OY 02 
oR + ay + Oe 

is important; we can to some extent grasp its geometrical significance. In 

our general notation, this expression becomes 

oA# 
Oat” 

ao.
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But evidently a, more fundamental operation is to take the covariant deriva- 
tives which will give an invariant 

. (Af). 

We therefore define the divergence of a tensor as its contracted covariant 
derivative. 

oA# By (29°4) (AM a= + fer wh A 
aA", 1 
a T= 9 oe, 2 =z g by (35°4) 

1 
== jim (AEM = 9) ccecccceecccneccenees (5111),   

since e may be replaced by #. In terms of tensor-density this may be written 

Atvag= git = = Be OH ceeeeseeeseteteeees (51°12), 

The divergence of A? is " (30°2) 

(An) = A wt fav, v} Ai —{yv, a} A® 

“V=9 = a (A; v= 9) — {zv, a} Aa eee ceeees (51:2), 

by the same reduction as before. The last term gives 

5 (a oe _ ae) Abe 
Ox, Ot, Ong “ 

When A*” is a symmetrical tensor, two of the terms in the bracket cancel 
by interchange of 8 and », and we are left with — 5 1 eg oe ABY, 

2 Ox, 
Hence for symmetrical tensors 

(AY), Tae (a” Vi 9) 5 2 ae seseesee (51°31), 

or, by (35-2), (49, = =o 2 (4 v= +5 Be Aap ooeeeee (5132). 
For antisymmetrical mane it is easier to use the contravariant associate, 

(40), = Aur +fav, v} AM + fav, pu} AP ceccecee (51-41). 
The last term vanishes owing to the antisymmetry. Hence 

1a (Aer a Jy ie. (Avr GJ) secececcecceces (51°42),
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Introducing tensor-densities our results become * . 

2 A a on — $8 fe (symmetrical tensors) (51°51), 

au = = Qe (antisymmetrical tensors) ...(51°52). 

52. The four identities. 

We shall now prove the fundamental theorem of mechanics— 

The divergence of Gi. —}39).G@ ts identically zero ......... (52). 

In three dimensions the vanishing of the divergence is the condition of 
continuity of flux, e.g. in hydrodynamics du/dx + dv/dy +0w/az=0. Adding a 
time-coordinate, this becomes the condition of conservation or permanence, as 

will be shown in detail later. I¢ will be realised how important for a theory 
of the material world ts the discovery of a world-tensor which is inherently 
permanent. 

I think it should be possible to prove (52) by geometrical reasoning in 
continuation of the ideas of § 33. But I have not been able to construct a 
geometrical proof and must: content tnyself with a clumsy analytical veri- 

fication. 
By the rules of covariant differentiation 

(93.G), =9,0G/ox, = 8G [omy 

Thus the theorem reduces to 

, 104 , . 
Civ =5 og, te seeneeenes (52'1). 

For p=1, 2, 3, 4, these are s the fon identities referred to in § 37. By (51°32) 
1 3 

= 7= =o (GV=9) +400, 
and since G= 9 Gag 

L0G ee , Ogre 
2 OL, = tg? a + 4Gag Oy ° 

Hence, subtracting, we have to > prove that 

. 1 2G ee 
= = ins (GN AQ) aBGe Geers eeeeeseeees (52°2). 

Since (52) is a tensor relation it is sufficient to show that it holds for a special 
coordinate-system ; only we must be.careful that our special choice of coordi- 
nate-system does not limit the kind of space-time and so spoil the generality 
of the proof. It has been shown in § 36 that in any kind of space-time, co- 
ordinates can be chosen so that all the first derivatives 2,,/dc. vanish at a 
particular point; we shall therefore lighten the algebra by taking coordinates 
such that at the point considered 

Oke 
= Oneeesesesnecapeseeruvensessseee | (528). 

8—2
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This condition can, of course, only be applied after all differentiations have - 
been performed. Then _ 

ToBI OND = TGieOINAG Bod 
Owing to (52'8) gg? Ng can be taken outside the differential operator, 
giving 

IG Bus | 
which by (34°5) is equal to , 

a a (ae Pyne Qua 291.) B99" a Oa ,0%, | Otp00,  dapda, Oxy, 0a— 
The rest of Bure is omitted because it consists of products of two vanishing 
factors (3-index symbols), so that after differentiation by dz, one vanishing 
factor always remains. 

By the double interchange o for 7, p for », two terms in (52-4) cancel out, 
leaving: ~ : 

  

i a. v fn vrnon 2 ( O'Dea OO or . 
Vg ot, (GiV—g9)=t9""9 on (oe - inte) ...(52°51). 

Similarly 

OGap aG.,, a BS Lge St ger | 
ag" OX 4g OX. 39 OLn (7° Br) 

  

os = vr o oO 295g OGy OO OOo 

.. - 49 ” Op 02,02, 02,025 ~ 0", 02, ~ i) 

  

. 2 2 

= tory 2 (Zoe “an ees seseecnseesnees eoees (52°52), Oty \OxyOx, Ox, 0%, 
since the double interchange o for 7, p for v, causes two terms to become 
equal to the other two. . 

Comparing (52°51) and (52'52) we see that the required result is estab- lished for coordinates chosen so as to have the property (52'3) at the point considered ; and since it is a tensor equation it must hold true for all systems of coordinates, , 

53. The material energy-tensor, 

Let p, be the proper-density of matter, and let da,/ds refer to the motion of the matter; we write, as in (46°8), ‘ dade, *.. | 
TH? poe wha lleeseeneneeeeseaeens (58'1), 

Then T+? (with the associated mixed and covariant tensors) is called the energy-tensor of the matter.
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For matter moving with any velocity relative to Galilean coordinates, the 

coordinate-density p is given by 

p= po (9 eee secueeseeneerenes (58-2), 

for, as explained in (14:2), the FitzGerald factor 8 = dt/ds appears twice, once 
for the increase of mass with velocity and once for the contraction of volume. 

Hence in Galilean coordinates 

da, de, 
WY PTE Tp cetererstetasaeseseaenenes (53°3), 

50 that if u, v, w are the components of velocity 

Lvs put, vl, Pwu, Pl —— eeeeeererserers (53°4). 

. puv, pv?, pw, pu 

puw, pw, pw, pw 

pu; pv, pw, p 

In matter atomically constituted, a volume which is regarded as small for 

macroscopic treatment contains particles with widely divergent motions. Thus 

the terms in (53° 4) should be summed for varying motions of the particles. 

For macroscopic treatment we express the summation in the following way.— 

Let (u, v, w) refer to the motion of the centre of mass of the element, and 

(a, %, W1) be the internal motion of the particles relative* to the centre of 

mass. Then in a term of our tensor such as Xp ( +) (v-+0), the cross-pro- 

ducts will vanish, leaving Zpuv-+Zpu,r,. Now Zpu,v, represents the rate of 

transfer of u-momentum by particles crossing a plane perpendicular to the 

y-axis, and is therefore equal to the internal stress usually denoted by pzy. | 
We have therefore to add to (53'4) the tensor formed by the internal stresses, 

bordered by zeroes. The summation can now be, omitted, p referring to the 

whole density, and wu, v, w to the average or mass-motion of macroscopic 

elements. Accordingly 
Ter = Prat prt ; Pyxzt PV, Pox + PWU, PU severe (53'5). 

Pry t puv, Pyyt pr, Dry + pwr, pv 

Paz + PUW, Pye + pvw, Pz + pw’, pw 
pu >: pv ’ pw » 

Consider the equations 
' ore 

; Ox, 

Taking first = 4; this gives by (53°5) 

@ (pu) , 2(pv) O(pw) - Op xo. “an ey + +35 =O eiceeceever eee (53°71), 

which is the usual “equation of continuity” in hydrodynamics. 

  = On ceseeersreresessseesrseeseene «(53°6): 

* In the sense of elementary mechanics, i.e. the simple difference of the velocities. 

z
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For »=1, we have oF 

OPee , OPry , OPzz __ __ (O(pu®) | O(puv)-, 9(puw) | 2 teu) 
“ae. dy te = (CS toy tae +a 

_ O(pu) , O(pv) , A(pw) | Op 
=-u( oe oy tae =i) 

 =o( du. du. Ou au) 
Mont ay t Mast aE 

2. ” Du ; =a. ~ PDE Peete rcc newer a cccene ss eeeessansees (53°72) 

by (53°71). Du/Dt is the acceleration of the element of the fluid.’ 
' This is the well-known equation of hydrodynamics when no body-force is 

acting. (By adopting Galilean coordinates any field of force acting on the 
mass of the fluid has been removed.) _; , 

Equations (53°71) and (53°72) express directly the conservation of mass 
and momentum, so that for Galilean coordinates these ‘principles are con- 
tained in - a 

oT +” fox, =0, 
In fact 07+*/dx, represents the rate of creation of momentum and mass in 
unit volume. In classical hydrodynamics momentum may be created in the 
‘volume (i.e. ‘may appear in the volume without having crossed the boundary) 
by the action of a body-force pX, pY¥, pZ; and these terms are added on the 
right-hand side of (5372). The creation of mass is considered impossible. 
Accordingly the more general equations of classical hydrodynamics are 

orey Far (PXs pY, pl, 0) vereseesecseresseens (53°81).   

In the special relativity theory mass is equivalent to energy, and the body- 
forces by doing work on the particles will also create mass, so that 

or = (0X, pY, pli, pS)erecesserceesseseoce (58°82), on, 

where pS is the work done by the forces pX, pY, pZ. These older formulae 
are likely to be only approximate; and the exact formulae must be deduced 
by extending the general relativity theory to the case when fields of force are 
present, viz. to non-Galilean coordinates, 7 , 

_ _, It is often convenient to use the mixed tensor ZT; in place of T#, For 
Galilean coordinates we obtain from (53'5)* 

  

T= ~Pex— pu?, —Pyz— pru, —Pea—pwu, pu. ...(53°91), 

Paz — PUW, —Pyz— pw, —Pz— pw, pw 
pu, py, —pw'ey op 

v 

* Eig. Ti =gpT%=0-TA+0+0,
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The equation equivalent to (53°82) is then 

, or. 
Ox, 
  = (— pX, — pY, — pZ, pS).crccccssceeeenees (53°92). 

That is to say 07%,/dx, is the rate of creation of negative momentum and of 

positive mass or energy in unit volume. 

54. New derivation of Hinstein’s law of gravitation. 

We have found that for Galilean coordinates 

. OT [Oe0, =O ssesescserseseeeeeseseeseeeers (54/1). 

This is evidently a particular case of the tensor equation 

(TH), = Onsesceseeeeeecesserserenenaees (54°21). 

Or we may use the equivalent equation : 

(Tip HO cecceeeeseeee Deceseeeeseneeees (54°22), 

which results from lowering the suffix ». In other words the divergence of 

the energy-tensor vanishes. 

Taking the view that energy, stress, and momentum belong to the world 

(space-time) and not to some extraneous substance in the world, we must 

identify the energy-tensor with some fundamental tensor, ie. a tensor be- 

longing to the fundamental series derived from gy. 

_ The fact that the divergence of 7%, vanishes points to an identification 

with (Gi,—49;%G) whose divergence vanishes identically (§ 52). Accordingly 

we set 
Gedy GSTs e estes (54-8), 

the factor 8 being introduced for later convenience in coordinating the units. 

To pass from (54°1) to (54°21) involves an appeal to the hypothetical 

Principle of Equivalence; but by taking (54°8) as our fundamental equation 

of gravitation (54°21) becomes an identity requiring no hypothetical assump- 

tion. 
We thus arrive at the law of gravitation for continuous matter (46°6) 

but with a different justification. Appeal is now made to a Principle of 

Identification. Our deductive theory starts with the interval (introduced by 

the fundamental axiom’ of § 1), from which the tensor g,, is immediately 

obtained. By pure mathematics we derive other tensors Gu, Burop, and if 

necessary more complicated tensors. These constitute our world-building 

material; and the aim of the deductive theory is to construct from this a 

world which functions in the same way as the known physical world. If we 

succeed, mass, momentum, stress, etc. must be the vulgar names for certain 

analytical quantities in the deductive theory; and it is this stage of naming 

the analytical tensors which is reached in (543). If the theory provides a 

tensor G’,—49%G which behaves in exactly the same way as the tensor
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summarising the mass, momentum and stress of matter is observed to behave, 
it is difficult to see how anything more could be required of it*. ; 

By means of (53°91) and (54°) the physical quantities p, u,v, W, Dox «+» Dzz 

are identified in terms of the fundamental tensors of space-time. There are 10 

of these physical quantities and 10 different components of G —49%G, so that 
the identification is just sufficient. It will be noticed that this identification 
gives a dynamical, not a kinematical definition of the velocity of matter 
u, ¥, W; it is appropriate, for example, to the case of a rotating homogeneous 
and continuous fly-wheel, in which there is no velocity of matter in the kine- 
matical sense, although a dynamical velocity is indicated by its gyrostatic 
properties}. The connection with the ordinary kinematical velocity, which 
determines the direction of the world-line of a particle in four dimensions, is 
followed out in § 56. 

Contracting (54-3) by setting v = 4, and remembering that g% = 4, we have 

G=8rT weececeeccceceees ee eeeeeees (54°4), 

so that an equivalent form of (54:3) is 

Gh =— 8a (Ta t942) beseees see eeeseeceeceeee(S4°5)s 

When there is no material energy-tensor this gives 

Gi =0, 

which is equivalent to Einstein’s law G,,=0 for empty space. 
According to the new point of view Einstein’s law of gravitation does not 

impose any limitation on the basal structure of the world. G,, may vanish‘or 
it may not. If it vanishes we say that space is empty; if it does not vanish 
we say that momentum or energy is present; and our practical test whether 
space is occupied or not—whether momentum and energy exist there—is the 
test whether G,, exists or nott. 

‘Moreover it is not an accident that it should be this particular tensor 
which is capable of being recognised by us. It is because its divergence 
vanishes—because it satisfies the law of conservation—that it fulfils the: 

_ primary condition for being recognised as substantial. If we are to surround 
ourselves with a perceptual world at all, we must recognise as substance that 
which has some element of permanence. We may not be able to explain how 
the mind recognises as substantial the world-tensor Gi —49.G, but we can 
see that it could not well recognise anything simpler. There are no doubt 

* For a complete theory it would be necessary to show that matter as now defined has a 
tendency to aggregate into atoms leaving large tracts of the world vacant, The relativity theory 
has not yet succeeded in finding any clue to the phenomenon of atomicity. 

+ Space, Time and Gravitation, p. 194. 
= We are dealing at present with mechanics only, 50 that we can scarcely discuss the part 

played by electromagnetic fields (light) in conveying to us the impression that space is occupied 
by something. But it may be noticed that the crucial test is mechanical. A real image has the 
optical properties but not the mechanical properties of a solid body. .
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minds which have not this predisposition to regard as substantial the things 

which are permanent; but we shut them up in lunatic asylums. 

The invariant ‘ L=9n,T 

, , dx, dz, 
= Guy Pos ds 

= Po 

since — urd, da, = ds’, . 

Thus G = SarT = 81 py: veeeeeeserseceevsseesseees (546). 

Einstein and de Sitter obtain a naturally curved world by taking instead 

of (54°3) , 
GY — Ag (F—-2A) = — BUT oe eeeeeeeseeeeeees (54°71), 

where X is a constant. Since the divergence of gj, or of g*” vanishes, the 

divergence of this more general form will also vanish, and the laws of conser- 

vation of mass and momentum are still satisfied identically. Contracting 

(54°71), we. have 
G— 4A = ST =B8rpy ccvescseeerseeeneeees (54°72). 

For empty space G=4a, and T;,=0; and thus the equation reduces to 

Gu=ATus 7 

or Guy = AJuvs 

as in (37°4). 
When account is taken of the stresses in continuous matter, or of the 

molecular motions in discontinuous matter, the proper-density of the matter 

requires rather careful definition. There are at least three possible definitions 

which can be justified; and we shall denote the corresponding quantities by 

Pos Poor Poor 
(1) We define pow I. 

By reference to (54'6) it will be seen that this represents the sum of the 

densities of the particles with different motions, each particle being referred 

to axes with respect to which it is itself at rest.. 

(2) We can sum the densities for the different particles referring theni 

all to axes which are at rest in the matter as a whole. The result is denoted 

by po. Accordingly ae 

po = T's referred to axes at rest in the matter as a whole. 

(3) Ifa perfect fluid is referred to axes with respect to which it is at rest, 

the stresses Prz, Pyy» Pz are each equal to the hydrostatic pressure p. The 

energy-tensor (53'5) accordingly becomes 

| Tue p 0
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Writing po = Poo —p, the pressure-terms give a tensor — g**p. Accordingly 
we have the tensor equation applicable to any coordinate-system 

Tw yy Ge _ gtr p eaeeeceessessssecees (5481). 

Thus if the energy-tensor is analysed into two terms depending respectively 
on two invariants specifying the state of the fluid, we must take these in 
variants to be p and pyo. 

The three quantities are related by 

Po Poo — SP = Pup — 4D ..eccsecececee ‘aseeeee (54°82). 
Ifa fluid is incompressible, i.e. if the closeness of packing of the particles 

is independent of p, the condition must be that Po is constant*. Incompressi- 
bility is concerned with constancy not of mass-density but of particle-density, 
so that no account should be taken of increases of mass of the particles due 
to motion relative to the centre of mass of the matter as a whole. 

For a liquid or solid the stress does not arise entirely from. molecular 
motions, but is due mainly to direct repulsive forces between the molecules held 
in proximity. These stresses must, of course, be included in the energy-tensor 
(which would otherwise not be conserved) just as the gaseous pressure is 
included. It will be shown later that if these repulsive forces are Maxwellian 
electrical forces they contribute nothing to Po, 80 that py arises entirely from 
the molecules individually (probably from the electrons individually) and is 
independent of the circumstances of packing. 

Since p, is the most useful of the three quantities in theoretical investiga- 
tions we shall in future call it the proper-density (or invariant density) 
without qualification. 

55. The force. 

By (51-2) the equation (7%), =0 becomes 

1 0 Oy pe , -- Vg 5a, Ea —= {uv, a} rT ame enccncesesece (55-1). 

Let us choose coordinates so that V —g=1; then 

In most applications the velocity of the matter is extremely small com- pared with the velocity of light, so that on the right of this equation T}=p is 
much larger than the other components of 7’;. As a first approximation we neglect the other components, so that 

a ow Fay iH, ND eeecssseeceeecceeeneceeses (55°3). 
__ ™ Many writers seem to have defined incompressibility by the condition Poo=constant, This is surely a most misleading definition. .
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This will agree with classical mechanics (53°92) if 

—X, —Y, —Z={I4, 4}, {24, 4}, (84, 4} ............(55°4). 

The 3-index symbols can thus be interpreted as components of the field 
of force. The three quoted are the leading components which act proportion- 
atcly to the mass or energy; the others, neglected in Newtonian mechanics, 

are evoked by the momenta and stresses which form the remaining com- 
ponents of the energy-tensor. 

The limitation V—g=1 is not essential if we take account of the con- 
fusion of tensor-densities with tensors referred to at the end of § 49. It will 
be remembered ‘that the force (X, Y, Z) occurs because we attribute to our 

mesh-system an abstract Galilean geometry which is not the natural geo- 
metry. Either inadvertently or deliberately we place ourselves in the position 

of an observer who has mistaken his non-Galilean mesh-system for rectangular 

coordinates and time. We therefore mistake the unit mesh for the unit of 

natural volume, and the density of the energy-tensor J. reckoned per unit 

mesh is mistaken for the energy-tensor itself 7%, reckoned per unit natural 

volume. For this reason the conservation of the supposed energy-tensor 

should be expressed analytically by d?,/éx,=0; and when a field of force 

intervenes the equations of classical hydrodynamics should be written 

a 
Ox, 

the supposed density p being really the “density-density” pV —g or T*. 
Since (55°1) is equivalent to 

a 
—V= ; Y hecseccecceccessesecsecs 52 so Sa (uv, a} Sz (55°52), 

  T= V(- KX, — VY, —Z, 0) ereeseeesreeees (55°51), 

the result (55-4) follows irrespective of the value of ¥—g. - 

The alternative formula (51°51) may be used to calculate 7’, giving 

0 a, Q . ae Se 10 beseeeeaseesaaeceseeeenees (55°6). 

Retaining on the right only T, we have by comparison with (55°51) 

Oo — 129m 14 Leu (5s _ A, ¥,Z= Se 2 dy? 22 07 teens (55°7). 

* It might seem preferable to avoid this confusion by immediately identifying the energy, 

momentum and stress with the components of 27 , instead of adopting the roundabout procedure 

of identifying them with Th and noting that in practice zy is inadvertently substituted. The 

inconvenience is that we do not always attribute abstract Galilean geometry to our coordinate- 

system. For example, if polar coordinates are used, there is no tendency to confuse the mesh 

drdéd@ with the natural volume r? sin 6drddd@; in such a case it is much more convenient. to 

take 7” as the measure of the density of energy, momentum and stress, It is when by our 

attitude of mind we attribute abstract Galilean geometry to coordinates whose natural geometry 

is not accurately Galilean, that the automatic substitution of zy for the quantity intended to 

represent T;, occurs.
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Hence, for a static coordinate-system 

Xda+ Ydy+ Zde=—$ 

= tgs; : 
so that X, Y, Z are derivable from a potential - ‘ 

0Q=—4$9,,+ const. 
Choosing the constant so that g,,=1 when 2=0 oo. 
oo gy = 1-20. sesateneceevesenses (55°8). 
Special cases of this result will be found in (15:4) and (88°8), Q being the 
potential of the centrifugal force and of the Newtonian gravitational force — 
respectively. . 

Let us now briefly review the principal steps in our new derivation of the 
laws of mechanics and gravitation. We concentrate attention on the world- 
tensor Ty, defined by 

206 a 4, O98 ty 4. 29 ) 

T.=— = (G,—t92G). 
The question arises how this tensor would be recognised in nature—what 
names has the practical observer given to its components? We suppose 
tentatively that when Galilean or natural coordinates are used 7'j is recognised 
as the amount of mass or energy per unit volume, Ti, T3, Ti as the negative 
momentum per unit volume, and the remaining components contain the 
stresses according to the detailed specifications in (53°91). This can only be 
tested by examining whether the components of T;, do actually obey the laws 
which mass, momentum and stress are known by observation to obey. For 
natural coordinates the empirical laws are expressed by af »/0x, = 0, which is satisfied because our tensor from its definition has been proved to satisfy 
(T.).=0 identically. When the coordinates are not natural, the identity 
Dw = 0 gives the more general law 

Q v 1 Qgas — a — oe Yas 

Ox, * 2 Qa, © . 

_We attribute an abstract Galilean geometry to these coordinates, and should accordingly identify the components of 7, as before, just as though the coordinates were natural; but owing to the resulting confusion of unit mesh with unit natural volume, the tensor-densities Ti, $4, $, F4 will now be taken to represent the negative momentum and energy per unit volume. In accordance with the definition of force as rate of change of momentum, the quantity on the right will be recognised as the (negative) body-force acting on unit volume, the three Components of the force being given by »=1, 2,3. When the velocity of the matter is very small compared with the velocity of light as in most ordinary problems, we need only consider on the
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right the component T or p; and the force is then due to a field of accelera- 
tion of the usual type with components —409,,/0m, —42gqu/dx., —40gu/Oxs. 
The potential © of. the field of acceleration is thus connected with gy by the © 
relation g,=1-—2Q. When this approximation is not sufficient there is no 

simple field of acceleration; the acceleration of the matter depends not only 
on its position but also on its velocity and even on its state of stress, 
Einstein’s law of gravitation for empty space G,,= 0 follows at once from the 

above identification of 7%. 7 . 

56. Dynamics of a particle. 

An isolated particle is a narrow tube in four dimensions containing a non- 
zero energy-tensor and surrounded by a region where the energy-tensor is 
zero. The tube is the world-line or track of the particle in space-time. * 

The momentum and mass of the particle are obtained by integrating 
over a three-dimensional volume; if the result is written in the form 

— Mu, —Mv, —Muw, M, 

then M is the mass (relative to the coordinate system), and (u, v, w) is the 
dynamical velocity of the particle, Le. the ratio of the momenta to the mass. 

The kinematical velocity of the particle is given by the direction of the 

tube in four dimensions, viz. (. a, =) along the tube. For completely 

continuous matter there is no division of the energy-tensor into tubes and the 

notion of kinematical velocity does not arise. . , 

It does not seem to be possible to deduce without special assumptions that 
the dynamical velocity of a particle is equal to the kinematical velocity. The 

law of conservation merely shows that (Au, Mv, Mw, M) is constant along the 

tube when no field of force is acting; it does not show that the direction of 

this vector is the direction of the tube. 

I think there is no doubt that in nature the dynamical and kinematical 

velocities are the same; but the reason for this must be sought in the sym- 

‘ metrical properties of the ultimate particles of matter. If we assume as in 

~ - § 38 that the particle is the nucleus of a symmetrical field, the result becomes 

“obvious. A symmetrical particle which is kinematically at rest cannot have 

_any momentum since there is no preferential direction in which the momentum 

‘could point; in that case the tube is along the ¢-axis, and so also is the vector 

(0, 0, 0, Jf). It is not necessary to assume complete spherical symmetry ; 

three perpendicular planes of symmetry would suffice. The ultimate particle 

may for example have the symmetry of an anchor-ring. / 

It might perhaps be considered sufficient to point out that a “particle” in: 

practical dynamics always consists of a large number of ultimate particles or 

atoms, so that the symmetry may be merely a consequence of haphazard 

averages. But we shall find in § 80, that the same difficulty occurs in under- 

standing how an electrical field affects the direction of the world-line of a
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charged particle, and the two problems seem to be precisely analogous. In 
the electrical problem the motions of the ultimate particles (electrons) have 
been experimented on individually, and there has been no opportunity of 
introducing the symmetry by averaging. I think therefore that the symmetry 
exists in each particle independently. 

It seems necessary to suppose that it is an essential condition for the 
existence of an actual particle that it should be the nucleus of a symmetrical 
field, and its world-line must be so directed and curved as to assure this 
symmetry. A satisfactory explanation of this property will be reached in § 66. 

With this understanding we may use the equation (53:1), involving kine- 
matical velocity, 

»_ dt, da, . 
Te = Pods ds Cheer r ewes eceeceenescccsces (56°1), 

in place of (53-4), involving dynamical velocity. From the identity 7%” = 0, we 
- have by (51-41) : , 

are V=g)=— fav, TONG ooceecccceseee (56-2). 

Integrate this through a very small four-dimensional volume. The left-hand 
side can be integrated once, giving 

[|ffze Vig dedade, +f Ted 9 de deydes +... 

=— ff ffteo, BL! MOGgdr ccc vesees(56°3). 
Suppose that in this volume there is only a single particle, so that the 

_ energy-tensor vanishes everywhere except in a narrow tube. By (56'1) the 
quadruple integral becomes So 

d a AL, —— d. . A 

— [fff eo, 13 ES pa =G dr =~ fap, Hae ye mds...(564), 
since pW —gdr=p,dW.ds =dm.ds, where dm is the proper-mass, 

On the left the triple integrals vanish except at the two points where the 
- world-line intersects the boundary of the region. For convenience we draw 
the boundary near these two points in the planes dx, =0, so that only the first 
of the four integrals survives. The left-hand side of (56°83) becomes 

. da d 1 . 

| | | pov gS Ge dada, vesvceseceseees (56°51), 
the bracket denoting the difference at the two ends of the world-line. 

The geometrical volume of the oblique cylinder cut off from the tube by 
sections dx,da2,da, at a distance apart ds measured along the tube is 

d: . 

7 .ds da,da,dx,,
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Multiplying by p,~ —g we get the amount of p, contained*, which is 

dmds. Hence (56°51) reduces to . 

ds |* 

The difference at the two limits is 

$ (mS) ds sev eseene -sseeee(56'52), 

where ds is now the length of track between the tio limits as in (56°4). 
By (564) and (56°52) the equation reduces to 

ad dx, dz, dx 
ds m =) =—mMm {aB, p} as. as we etvcevesccces (56°6). 

Provided that m is constant this gives the equations of a geodesic (28°5), 
showing that the track of an isolated particle is a geodesic. The constancy of 
m can be proved formally as follows— 

  

  

  

  

From (56°6) ~ 
dx, d day\ | dix, dx, dxz 

mone Fe ag ge) = LPs Ge ae de 
yy Boe Me ae dy 

dxcg ds ds ds 

dgay Ax, Ax, 
=~ ame ds ds 
_ Guy AL, Any 
=—tm ds ds ds° 

Adding the same equation with » and v interchanged 

dx, d dz, dz, @ dz, di, — diy Any _ 

guonm FEF. (me FE) + guns (me) hm To Teanga O 

or 5 (Suen ds) = % 

_ By (22/1) this gives dm?/ds=0. Accordingly the invariant mass of an isolated 

particle remains constant. ; 

The present proof does not add very much to the argument in § 17 that 

the particle follows a geodesic because that is the only track which is abso- 

lutely defined. Here we postulate symmetrical properties for the particle 

(referred to proper-coordinates); this has the effect that there is no means of 

fixing a direction in which it could deviate from a geodesic. For further 

enlightenment we must wait until Chapter V. 

* The amount of density in a four-dimensional volume is, of course, not the mass but a 

quantity of dimensions mass x time. 

ah
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-57, Equality of gravitational and inertial mass. Gravitational 

waves. : . - 

The term gravitational mass can be used in two senses; it may refer to 

(a) the response of a particle to'a gravitational field of force, or (b) to its 
power of producing a gravitational field of force. In the sense (a) its identity 
with inertial mass is axiomatic in our theory, the separation of the field of 
force from the inertial field being dependent on our arbitrary choice of 
an abstract geometry. We accordingly use the term exclusively. in the sense 
(b), and we have shown in § 38, 39 that the constant of integration m repre- 
sents the gravitational mass. But in the present discussion the p, which 
occurs in the tensor 7,, refers to inertial mass defined by the conservation of 

energy and: momentum. The connection is made via equation (54:3), where 
on the left the mass appears in terms of g,,, Le. in terms of its power of 
exerting (or being accompanied by) a gravitational field; and on the right it 
appears in the energy-tensor which comprises pp according to (531). But it 
will be remembered that the factor 8a in (543) was chosen arbitrarily, and 
this must now be justified*. This coefficient of proportionality corresponds to 
the Newtonian constant of gravitation. 

The propottionality of gravitational and ‘inertial mass, ‘and the “constant 
of gravitation” which connects them, are conceptions belonging to the ap- 
proximate Newtonian scheme, and therefore presuppose that the gravitational 
fields are so weak that the equations can be treated as linear. For more 
intense fields the Newtonian terminology becomes ambiguous, and it is idle 
to inquire whether the constant of gravitation really remains constant when 
the mass is enormously great. Accordingly we here discuss only the limiting 
case of very weak fields, and set 

where 8,, represents Galilean values, and k,, will be a small quantity of the 
first order whose square is neglected. The derivatives of the g,, will be small 
quantities of the first order. 

We have, correct to the first order, 

  

. : 9 , 2, Sy: 
G, Quo Boon" (Ee 4 Fite _ PAtve _ ete) ..(57°2) ede, ON pot, - Oye, Ol p02~e/) 

  

by (84°5). ‘ 
We shall try to satisfy this by breaking it up into two equations 

_ FG st. . Cw = 49° Bagh Tete (57°31) 

0° o a 
d = 2 Gea _ Guo _ FI vp- mee | an . O=gr Ge in,aa, ~ dare “2.) seeeseeeeesenes (57°32). 

* It has been justified in § 46, which has a close connection with the present paragraph ; bat 
the argument is now proceeding in the reverse direction,
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The second equation becomes, correct to the first order, 
sop ( hee Alyse Ovo 

O= 6% (sae aa, 0%, sates) 
oh Che  Ohy 

a On, 02,0, OdyCLe’ 

where = 67 PRyod >; h=hh=Sh,,. 

This is satisfied if 

ahs _1 2h 
Ot, 2 0h, 

0 a a . * or Daz (Ti — ESR) =O. eeceeeteeeceeveneeeeeees (57-4). 

The other equation (57°31) may be written 

Ohya = 2G, 

or DC Ag = 2G, 

showing that Gi is a small quantity of the first order. Hence 

OC 25h) = 2(Gi—49°G) 
SH 1OTTS vicceccccssccessersenees (57°5). 

This “equation of wave-motion” can be integrated. Since we are dealing 
with small quantities of the first order, the effect of the deviations from 
Galilean geometry will only affect the results to the second order; accordingly 

the well-known solution* may be used, viz. 

he —hSth= 1 7 [Cs 16rPx)’ adv 

the integral being taken over each element of space-volume dV’ at a coordi- 
nate distance r’ from the point considered and at a time ¢—r’, ie. at a time 

such that waves propagated from dV’ with unit velocity can reach the point 
at the time considered. 

If we calculate from (57°6) the value of 
.  O ire 

. 5, (te —4dh), 

the operator 0/0x_ indicates a displacement in space and time of the point 
considered, involving a change of 7’, We may, however, keep r’ constant on the 

right-hand side and displace to the same extent the element av’ where (7, “ is 
calculated. Thus 

EH soin=—4 [{2 (2) 
But by (55'2) 67%/dx, is of the second order of small quantities, so that to our 
approximation (57°4) is satisfied. | 

pe av’ 

* Rayleigh, Theory of Sound, vol. 11, p. 104, equation (3).
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The result is that phy = Glas cceseccenccaeeeseeseacceeseees (57°7) 
satisfies the gravitational equations correctly to the first order, because both 
the equations into which we have divided (57-2) then become satisfied. Of 
course there may be other solutions of (57-2), which do not satisfy (57°31) and 
(57°32) separately. Lo 

For a static field (57-7) reduces to 

— Vip = 24s 

=— 169 (T,.,—48,T) by (54°5). 

Also for matter at rest 77 =T',,=p (the inertial density) and the other com- 
ponents of 7’, vanish; thus ° 

V? (lus has sss has) = 8p (1, 1, 1, 1). 
For a single particle the solution of this equation is well known to be 

, 2 
Ia, he, hig, he =— = . 

r 

. Hence by (57°1) the complete expression for the interval is 

dena (14 2) et + dye + de) + (1-2) ar .....0678), 
agreeing with (46°15). But m as here introduced is the inertial mass and not 
merely a constant of integration. We have shown in §§ 38, 39 that the m in 
(46:15) is the gravitational mass reckoned with constant of gravitation unity. 
Hence we see that inertial mass and gravitational mass are equal and ex- 
pressed in the same units, when the constant of proportionality between the 
world-tensor and the physical-tensor is chosen to be 87 as in (54'8). 

In empty space (57°7) becomes 

Oh = 0, 

showing that the deviations of the gravitational potentials are propagated 
as waves with unit velocity, i.e. the velocity of light (§ 30). But it must be 
remembered that this representation of the propagation, though always per- 
missible, is not unique. In replacing (572) by (57°31) and (57°32), we introduce 
a restriction which amounts to choosing a special coordinate-system. Other 
solutions of (57-2) are possible, corresponding to other coordinate-systems, 
All the coordinate-systems differ from Galilean coordinates by small quantities 
of the first order. The potentials g,, pertain not only to the gravitational 
influence which has objective reality, but also to the coordinate-system which 
we select arbitrarily. We can “propagate” coordinate-changes with the 
speed of thought, and these may be mixed up at will with the more dilatory 
propagation discussed above. There does not seem to be any way of distin- 
guishing a physical and a conventional part in the changes of the g,,. 

The statement that in the relativity theory gravitational waves are pro- 
pagated with the speed of light has, I believe, been based entirely on the
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foregoing investigation; but it will be seen that it is only true in a very 
conventional sense. If coordinates are chosen so as to satisfy a certain con-_ 
dition which has no very clear geometrical importance, the speed is that of 
light; if the coordinates are slightly different the speed is altogether different 
from that of light. The result stands or falls by the choice of coordinates and, 
so far as can be judged, the coordinates here used were purposely introduced 
in order to obtain the simplification which results from representing the 
propagation as occurring with the speed of light. The argument thus follows 
a vicious circle. 

Must we then conclude that the speed of propagation of gravitation is 
necessarily a conventional conception without absolute meaning? J think not. 
The speed of gravitation is quite definite; only the problem of determining 
it does not seem to have yet been tackled correctly. To obtain a speed inde- . 
pendent of the coordinate-system chosen, we must consider the propagation - 
not of a world-tensor but of a world-invariant. The simplest world-invariant 
for this purpose is Bi,,B?"", since G and G,,,G#" vanish in empty space. It is 
scarcely possible to treat of the propagation of an isolated pulse of gravita- 
tional influence, because there seems to be no way of starting a sudden pulse 
without calling in supernatural agencies which violate the equations of 
mechanics. We may consider the regular train of waves caused by the earth 

in its motion round the'sun. At a distant point in the ecliptic Bi,,Be”” will 

vary with an annual periodicity; if it has a maximum or minimum value at 
the instant when the earth is seen to transit the sun, the inference is that the 

wave of disturbance has travelled to us at the same speed as the light. (It 
may perhaps be objected that there is no proof that the disturbance has been 
propagated from the earth; it might be a stationary wave permanently 
located round the sun which is as much the cause as the effect of the earth’s 
annual motion. Ido not think the objection is valid, but it requires examina- 
tion.) There does not seem to be any grave difficulty in treating this problem; 
and it deserves investigation. 

58. Lagrangian form of the gravitational equations. 

“The Lagrangian function @ is defined by 

La gee Vg ({ua, B} {vB, a} — {uv, a} (a8, B}) ree. (58:1), 

which forms’ part of the expression for © (=g"*G,,V—g). For any small 
variation of & 

d= {ua, B} 5 (g*” Vv—g {vB, a}) + {vB, a} 8 (gt V-9 {ua, B}) 

— {ur, a} (yg Vg {aB, B}) — {aB, B} 8 (gt V—@ fur, a}) 

—({ue, B} (vB, a} — fur, a} fa, B}) 5 (gt? VG) serseeeeeeee (58-2). 
‘9—2
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The first term in (582) . 

= 4 {ua, B}5 (v= 9. grr ge (Gee + Ses — ee) 

= $n, B}8(V=9. 9 2) 

=—4{ya, A} 8 (v=9.£) _ by (35:11) 

  =~ {un a} 8 (V=9 an =) sesnsessseeesennennesnesee (58°31). 
02, 

The second term reduces to the same. 

The third term becomes by (35°4) 

{ur a} 8 (o ae v= 9) eveveee eseeceees (58°32). 
In the fourth term we have 

3 __ 
GN 9 inv, a= (gh V—g), 

by (51°41), since the divergence of g*” vanishes. Hence with some alterations 
of dummy suffixes, the fourth term becomes 

an/ 0 . {BB} GLB (SGV HQ)) sesseceereesssee (58:38). 
. Substituting these values in (58°2), we have . 

B2= [-{av, a} +95 8, 8118 (<2  /=G)) 

—[{ua, 8} {v8, a} — {uv, a} {aB, B}18 (gt V—9)...(58°4). 

We write gey = gv —9; a= (gt v9) beveeeeeeass (58°45). 

Then when & is expressed as a function of the g*” and g#”, (58'4) gives 

sess = (le, 8} 08, — fn, a} fa BY) eee (5831), 

i = Lo fpiry a} +98 (08, BY] coveecccccsesessseees(58'52), 
Comparing with (37:2) we have 

(a a (58-6) 

This form resembles that of Lagrange’s equations in dynamics. Regarding 
g*” as a coordinate g, and a, as a four-dimensional time t, so that gM” is a velocity 
7, the gravitational equations G,,=0 correspond to the well-known form 

, d & ag 7 
dtdq’ oq
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The two following formulae express important properties of the Lagrangian 
function: 

  

ge gs TB seeseeeseene seeeseeees (58°71), 
og 

Ge Fa ED essssscesetctneneen (58°72). 
The first is obvious from (58: 51). To ee the second, we have 

gn” = gv —9)= v=pe +9 Vg {ae, ¢} 

= VAG fea, 1} 9” — feu, nh gt + fae, oI 
by (80:1) since the covariant derivative of g*” vanishes, 

Hence by (58°52) 

og — 
gu” ager = V—g[{uv, a} {ea, Bg” +{uv, a} fea, v} g — {uv, a} fae, e} g*” 

—{vB, B} gh {ea wh g*” — (vB, Bh gi (ea, v} g™ + VB, B} 9% fae, €} 9”), 
which by change of dummy suffixes becomes 

= V—g[{Av, a} {ua, B} gt” + {uB, a} [va, B} 9 — {uv, a} {a8, B} g*” 
 fo8, B} ua, a} gH” — a8, B} lop, ab 9” + (v8, B} {wesc} g@] 

= 22 by (581). 

The equations (58°71) and (58°72) show that the Lagrangian function is a 
homogencous function of degree —1 in the “coordinates” and of degree 2 in 
the “ velocities.” 

- We can derive a useful expression for © - 
G= gt” Guy , 

  

  

      

by (58°71) and (58°72). 
It will be seen that (@ +2) has the form of a divergence (51° 12); but the 

quantity of which it is the divergence is not a vector-density, nor is 2 a scalar- 

density. 
We shall derive another formula which will be needed in § 59, 

dig =9 —9)= vmg (dg + 9". bg*dges) by (85°). 
Hence, using (85°2), 

Gund (gt Ng) =V—G (— G#d gay + £Gg*? dgap) 
=— (Ger — 39" G)V = 9 dou» 
= Sr Wg yy vvecesesssssessescsssssesssees (58-91).
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Accordingly 

Bar Se OIow guy 

Cla ue * . 

"78 a 28.) 
= Se (sm a age” 

30 7/.,, & @ w Of i, 0 58:99 
= 55, (sf agp) ~ aay *Og9” 82 age @ 2). 

of _ 28 og 08 O05 Now Oa. ~ Ogee 02a aga” Ot_ 

* ager argu» ' aguy 

and since Sa _ on” 
Oka: O%aCtp Gag’ 

we see that (58°92) reduces to 

Q Q sae Oe = 2 (ye 8) _ a2 
  

ata ~ dag \S*" See) ~ Sa, 
af, @ } 9% = 5a {st Fp ER ve seeessene (58°93). 

59. Pseudo-energy-tensor of the gravitational field. 
The formal expression of the conservation of the material energy and 

momentum is contained in the equations 

  

On. =q. . te O ..ececccccescceccssseccsesceeees (59°1), 

or, if we name the coordinates 2, Y, 2, t, 

a 0 0 a — —Fra gy — = an te + 5, Se $5, te +55 0. 

' Multiply by dedydz and integrate through a given three-dimensional region. 
The last term is ! 9 - 

=| [[Stdedyae 

The other three terms yield surface-integrals over the boundary of the region. Thus the law (59-1) states that the rate of change of fff &'dadydz is equal to certain terms which describe something going on at the boundary of the region. In other words, changes of this integral cannot be created in the interior of the region, but are always traceable to transmission across the boundary, This is clearly what is meant by conservation of the integral, 
This equation (59°1) applies only in the special case when the coordinates are such that there is no field of force. We have generalised it by substituting the corresponding tensor equation Ty = 0; but this is no longer a formal ex. pression of the conservation of anything. It is of interest to compare the traditional method of generalising (59-1) in which formal conservation is adhered to. re
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In classical mechanics the law of conservation is restored by recognising 
another form of energy—potential energy—which is not included in T1. This 
is supposed to be stored up in the gravitational field; and similarly the mo- 

_ mentum and stress components may have their invisible complements in the 
gravitational field. We have therefore to add to Y;, a complementary expression 
ty denoting potential energy, momentum and stress; and conservation is only 

asserted for the sum. If 

  

STA ce eeccccersseetseneeneeeees (59:2), 

then (59-1) is generalised in the form 

aS, 3a, = QO  eecesceereesctesseseceeeeeees (59°83). 

Accordingly the difference between the relativity treatment and the 
classical treatment is as follows. In both theories it is recognised that in 
certain cases Ty is conserved, but that in the general case this conservation 
breaks down. ‘The relativity theory treats the general case by discovering a 
“more exact formulation of what happens, to Z when it is not strictly con- 
served, viz. T;,=0. The classical theory treats it by introducing a supplementary 
energy, So that conservation is still maintained but for a different quantity, 
viz. @S;/ex,=0. The relativity treatment adheres to the physical quantity and 
modifies the law; the classical treatment adheres to the law and modifies the 

physical quantity. Ofcourse, both methods should be expressible by equivalent 
formulae; and we have in our previous work spoken of Y,=0 as the law of 
conservation of energy and momentum, because, although it is not formally 
a law of conservation, it expresses exactly the phenomena which ‘classical 

mechanics attributes to conservation. 

The relativity treatment has enabled us to discover the exact equations, 
and we may now apply these to obtain the corresponding exact expression for 
the quantity S;, introduced in the classical treatment. . 

It is clear that ti and therefore ©; cannot be tensor-densities, because tt, 

vanishes when natural coordinates are used at a point, and would therefore 

always vanish if it were a tensor-density. We call t,, the pseudo-tensor-density 

of potential energy. 

The explicit value of t;, must be calculated from the condition (59°3), or 

Oth ash 

Oxy Cn, 

=— 48 Shee by (55°6) 

  

1 2a ag --e (ee ash ef by (58:93) 

Hence + 16ath = gi t— gi? BOR ccessssneessaseetees (59°4)   

dogs?
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This may remind us of the Hamiltonian integral of energy 
: ,0L “hey in general dynamics. ; 

We can form a pseudo-scalar-density by contraction of (59-4) 

_16mt= 48 ~ 9 a 
"=22 by (58°72). 

Thus we obtain the interesting comparison with (54-4) 
L=8rt 
'@G= sat 

It should be understood that in this section we have been occupied 
with the transition between the old and new points of view. The quantity t% 
represents the potential energy of classical mechanics, but we do not ourselves 
recognise it as an energy of any kind. It is nota tensor-density, and it can 
be made to vanish at any point by-suitably choosing the coordinates; we do 
not, associate it with any absolute feature of world-structure. In fact finite values of ty, can be produced in an empty world containing no gravitating - matter merely by choice of coordinates. The tensor-density Tf, comprises all 
the energy which we recognise; and we call it gravitational or material energy 
indiscriminately according as it is expressed in terms of q,, or Pos U, U, W. 

This difference between the classical and the relativity view of energy recalls the remarks on the definition of physical quantities made in the Intro- 
duction. As soon as the principle of conservation of energy was grasped, the physicist practically made it his definition of energy, so that energy was that something which obeyed the law of conservation. He followed the practice of the pure mathematician, defining energy by the properties he wished it to have, instead of describing how he had measured it, This procedure has turned out to be rather unlucky in the light of the new developments. It is true that a quantity G;, can be found which obeys’ the definition, but it is not a tensor and is therefore not a direct measure of an intrinsic condition of the world. Rather than saddle ourselves with this quantity, which is not now of primary interest, we go back to the more primitive idea of vis viva— generalised, it is true, by admitting heat or molecular vis viva but not potential energy. We find that this is not in all cases formally conserved, but it obeys the law that its divergence vanishes; and from our new point of view this is a simpler and more significant property than strict conservation. 

Integrating over an isolated material body we may set 

| | | | S,tdedydz=— Mu, — Mv, — Ifw, M, 

  

be, I | | C,tdadydz =— M'u', —M'v', — Mw, AL’,
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where the latter expression includes the potential energy and momentum of 
the body. Changes of Af’u’, etc. can only occur by ‘transfer from regions out- 
side the body by action passing through the boundary; whereas changes of 
Afu, ete. can be produced by the mutual attractions of the particles of the 
body. It is clear that the kinematical velocity, or direction of the world-line 
of the body, corresponds to u:v:w:1; the direction of u’:v’: w':1 can be varied 
at will by choosing different coordinate-systems. 

The components (t/, t2, t¢) constitute a “Poynting vector” representing 

the flow of potential energy at any point. No physical significance can be 
attached to the localisation of the energy flow, but the total flux of this vector 
through a closed surface in empty space will by (59:3) give correctly the 
rate of diminution of material and potential energy (¥,‘+t,) within the 
surface. If there is within the surface a material system in periodic motion, 

coordinates will naturally be chosen so that t,‘ undergoes no secular change ; 

the flux will then give the secular change of V4, ie. the loss of energy from 
the material system due to the gravitational waves produced by it. 

60. Action. 

The invariant integral 

A={[[foow=g ae secsesueaesnessesneseess (60-11) 

represents the action of the matter in a four-dimensional region. 

By (49°42), (As I [ | poadWds 

= [ did sesecveseees seeneseveaeeseves (60°12), 

where m is the invariant mass or energy. 

Thus the action of a particle having energy m for a proper-time ds is 

equal to mds, agreeing with the definition of action in ordinary mechanics as 

energy multiplied by time. By (54°6) another form is 

A=e II [ I je VG Oteesveseeses eesseseees (60-2), 

so that (ignoring the numerical factor) GW— g, or G, represents the action- 

density of the gravitational field. Note that material action and gravitational 

action are alternative aspects. of the same thing; they are not to be added 

together to give a total action. 

But in stating-that the gravitational action and the material action are 

necessarily the same thing, we have to bear in mind a very peculiar conception 

which is almost always associated with the term Action. From its first intro- 

duction, action has always been looked upon as something whose sole razson 

d’étre is to be varied—and, moreover, varied in such a way as to defy the laws
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of nature! We have thus to remember that when a writer begins to talk 
about action, he is probably going to consider impossible conditions of the 
world. (That does not mean that he is talking nonsense—he brings out the 
important features of the possible conditions by comparing them with impossible 
conditions.) Thus we may not always disregard the difference between material 
and gravitational action ; it is impossible that there should be any difference, 
but then we are about to discuss im possibilities. 

We have to bear in mind the two aspects of action in this subject. It is primarily a physical quantity having a definite numerical value, given in- 
differently by (60:11) or (60-2), which is of special importance because it is 
invariant. But it also denotes a mathematical function of the variables; the 
functional form, which is all important, will differ according to which of the 
two expressions is used. In particular we have to consider the partial deriva- tives, and these will depend on the variables in terms of which the action is 
expressed. , a 

The Hamiltonian method of variation of an integral is of great importance 
in this subject; several examples of it will be given presently. I think it is unfortunate that this valuable method is nearly always applied in the form of @ principle of stationary action. By considering the variation of the integral 
for small variations of the Juv, Or other variables, we obtain a kind of general- ised differential coefficient which I will call the Hamiltonian derivative. It may be possible to construct integrals for which the Hamiltonian derivatives vanish, so that the integral has the stationary property. But just as in the 
ordinary differential calculus we are not solely concerned with problems of 
maxima and minima, and we take some interest in differential coefficients which do not vanish; so Hamiltonian derivatives may be worthy of attention even when they disappoint us by failing to vanish. 

Let us consider the variation of the gravitational action in a region, viz. 

898A = fe V=gdr, 
for arbitrary small variations 8g,, which vanish at and near* the boundary of 
the region. By (58°8) , 

: 8[av=gar=-s tar +3 fo ( =) dr   

Also since 2 is a function of gt” and gu 

[evar = le Sgt’ + = Be") dr, 

and, by partial integration of the second term, 

= Ge z a) dg" dr + fx (ee Sgt") dr. 

* So that their first derivatives also vanish. 
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By (58'6) the first integrand becomes — G,,,5q"”, so that we have 

slovsar=[onsers=Dirs[ 2 (ee ($2) ar0. 
The second term can be integrated immediately giving a triple integral over 

the boundary of the four-dimensional region; and it vanishes because all 

variations vanish at the boundary by hypothesis. Hence 

| (8 (@V=gar= [G03 (ge V=9) dr... sessusneeavevens (60°41) 

=—{(Gw-3 GQ) Bguy NOG EF cessssess (60-42) 
by (58°91). 

I call the coefficient — (G#” — 4g*”G) the Hamiltonian derivative of G with 

respect to g,,, writing it symbolically , 

he 

Ngu 

We see from (60°42) that the action A is only stationary when the energy- 

tensor 7#* vanishes, that is to say in empty space. In fact action is only 

stationary when it does not exist—and not always then. 

It would thus appear that the. Principle of Stationary Action is in general 

untrue. Nevertheless some modified statement of the principle appears to 

have considerable significance. In the actual world the space occupied by 

matter (electrons) is extremely small compared with the empty regions, Thus 

the Principle of Stationary Action, although not universally true, expresses a 

very general tendency—a tendency with exceptions*. Our theory does not 

account for this atomicity of matter; and in the stationary variation of action 

we seem to have an indication of a-way of approaching this difficult problem, 

although the precise formulation of the law of atomicity is not yet achieved. 

It is suspected that it may involve an “ action” which is capable only of 

discontinuous variation. 

It is not suggested that there is anything incorrect in the principle of 

least action as used in classical mechani¢s. The break-down occurs when we 

attempt to generalise it for variations of the state of the system beyond those 

hitherto contemplated. Indeed it is obvious that the principle must break 

down if pressed to extreme generality. We may discriminate (a) possible 

states of the world, (b) states which although impossible are contemplated, 

(c) impossible states which are not contemplated. Generalisation of the prin- 

ciple consists in transferring states from class (c) to class (6); there must be 

some limit to this, for otherwise we should find ourselves asserting that the 

equation 5A #0 is not merely not a possible equation but also not even an 

impossible equation. 

= — (Ge — bgt? G) = 8TH ees seveesees (60°43).   

* Ido not regard electromagnetic fields as constituting an exception, because they have not 

yet been taken into account in our work. But the action of matter has been fully included, so 

that the break-down of the principle as applied to matter is a definite exception.
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61. A property of invariants. 
Let E be any invariant function of the g,, and their derivatives up to any 

order, so that . . 

[ KWV=g dr ig an invariant. 

The small variations 6 (K'/— g) can be expressed as a linear sum of terms 
involving 89,,, 8 (09u»/0%2), § (8°Gu,/Ox_0xg), ete. By the usual method of partial integration employed in the calculus of variations, these can all be reduced to 
terms in $9,,, together with complete differentials. 

Thus for variations which vanish at the boundary of the region, we can 
write 

8 [x Jogdr= | PH SI VOGT veccesssecere (61-1), 
where the coefficients, here written P#”, can be evaluated when the analytical expression for K is given. The complete differentials yield surface-integrals " over the boundary, so that they do not contribute to the variations. In accordance with our previous notation (60°43), we have 

Pa ne 

: NG u» 

We take P+” to be symmetrical in and », since any antisymmetrical part would be meaningless owing to the inner multiplication by S9y,. Also since 59u» 18 an arbitrary tensor P#” must be a tensor. 
Consider the case in which the 59, arise merely from a transformation of coordinates. Then (61:1) vanishes, not from any stationary property, but because of the invariance of K. The 89,» are not now arbitrary independent 

variations, so that it does not follow that P+” vanishes, 
Comparing gy, and gy» + S9uv by (23°22), since they correspond to a trans- formation of coordinates, 

  

O(a + 802) 9 (ag + 8x) - Iu = (os + 893) Oly On, 

_. 8h Ox—p | Ota G(Sxz) Org 8 (Sx) = Ges + 8gea) ax, Ox, + Gen Ox, Ox, Oa, Om,” 
a On, But ; ; 3a, = Go, in = 98 by (22°83). 

a 0 (8a, 0 (82, 

This is a comparison of the fundamental tensor at x,+ 8x, in the new coordinate-system with the value at %_ in the old system. There would be no objection to using this value of guy provided that we took account of the corresponding 8 (dr).. We prefer, however, to keep dr fixed in the comparison, 
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and must compare the values at x, in both systems. It is therefore necessary 
to subtract the change 8z,.09,,/0x. of gu, in the distance 6z,; hence 

8 0 (822) + 0 (624) + Ou Sit, 

On, ” Oly aXe 
  — 89 ur = Gua 

Hence (61°1) becomes 

Vogdr= , 2 se) a Ow 8 [KH g dr = — [Pe HG (tue go (880) + Gre pee (Ba) + Get Biza) dr 
which, by partial integration, 

a — 2 _— — 
= |\e (FuaP*” V— g) + aa, (va Pe” V— 9) — Perv = ‘eel 82,07 

=9 | te Pr — $ Per Cael dxadt 
On, 

=2 [Piz MG dr by (BUSL) sessessecsecsecssseeseesteeeseeeatenee (61-4). 

This has to vanish for all arbitrary variations d2,—deformations of the mesh- 

system—and accordingly 
(Pa)vO..sceecsccerscescenseeesenseeneee (61°5). 

We have thus demonstrated the general theorem— 

The Hamiltonian derivative of any fundamental invariant is a tensor whose 

divergence vanishes. , 
The theorem of § 52 is a particular case, since 7#” is the Hamiltonian 

derivative of G by (60°43). 

62. Alternative energy-tensors. 

We have hitherto identified the energy:tensor with G,—49,@ mainly 

because the divergence of the latter vanishes identically; but the theorem 

just proved enables us to derive other fundamental tensors whose divergence 

vanishes, so that alternative identifications of the energy-tensor would seem" 

to be possible. The three simplest fundamental invariants are 

K=G, K'=Gy Ge, EK = Boye By esseeeeeeseeees (62:1). 

Hitherto we have taken NK/Ng,, to be the energy-tensor; but if NK’ /Ngyy 

were substituted, the laws of conservation of energy and momentum would be , 

satisfied, since the divergence vanishes. Similarly NK” /Ngp, could be used. 

The condition for empty space-is given by the vanishing of the energy- 

tensor. Hence for the three possible hypotheses, the law of gravitation in 

empty space 1S nk nk’ nk’ 6 

ow’ Tiga’ Tgue seensseenenneeenaes 

respectively. ; 

It is easy to see that the last two tensors contain fourth derivatives of the 

Juv; 80 that if we can lay it down as an essential condition that the law of 

gravitation in empty space must be expressed by differential equations of the
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second order, the only possible energy-tensor is the one hitherto accepted. 
For fourth-order equations the question of the nature of the boundary con- 
ditions necessary to supplement the differential equations would become very 
difficult ; but ‘this does not seem to be a conclusive reason for rejecting such 
equations, 

The two alternative tensors are excessively complicated expressions; but 
when applied to determine the field of an isolated particle, they become not 
unmanageable. The field, being symmetrical, must be of the general form 
(88:2), so that we have only to determine the disposable coefficients » and p 
both of which must be functions of r only. K’ can be calculated in terms of 
A and v without difficulty from equations (88°6); but the expression for XK” 
turns out to be rathér simpler and I shall deal with it. By the method of 
§ 38, we find 
K’=K" Vg = 2et A+) sin a {e-* (XN? + y'8) 4 Arte (LQ /y/ — dv? —dy") 

$21 eASPY7} (62:3). 
It is clear that the integral of &” will be stationary for variations from the 
symmetrical condition, so that we need only consider. variations of X and py and their derivatives. with. respect to r. Thus the gravitational equations 
nk" /Ngy,=0 are equivalent to 

nk” nk’ 
TO = 0, hy =0 ” ee cccsess ste eeeeeeeees (62:4). 

Now for a variation of ) 

ok or , ok ” 8 frdr= (Fan + 2 my +25 a jar 
2+ 

= | i -2 eS) + a xt éddr + surface-integrals, 

Hence our equations (62°4) take the Lagrangian form 
NK" _ os” a ae’ wag” TR 8x ~ or ON ta HR =O NK” ae" aan’ page | pct 

TW a ae tia =O | 
From these \ and v are to be determined. 

It can be shown that one exact solution is the same ag in § 38, viz. 
- On ey HL AQMP cercceececececcsces, (62°6). For taking the partial derivatives of (62°3), and applying (62°6) after the differentiation, 

Os" " —e-A) 
z 

hate ot m m\ . 7 -2eto" sin O=(—~72.72 4167) sin a, 

  

OR” . a ai = Qeh At») gin 6 {Qe n! 4. g2e-2a (40'0’ — dv? —~ hy”) v} 

= (94,7 _ =) i (248 85 sin 6,
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Or” 

an” = 
oe =19"=047 m sin 6, 

oe 

ay 2 2e4* sin {Qe-arv! + Arte (40/0 — 4” - 4v') ha’ —4v')} 

=(- —4075 +8 mr) sin 8, 

Oe” bat) ete _, ” m | 
a7 = Ze Ysin 6. 2r2¢e-* (ANY — fy? -— dv") = (163-82 ™) sin 8. 

On substituting these values, (62°5) is verified exactly. 
The alternative law N’/Ng,,=0 is also satisfied by the same solution. 

For 

  

8 (Gur Ger VG) = Cyd (GH VG) + Ge VG Guy, 
hence the variation of K’W—g vanishes wherever G,,=0. Any field of gravi- 
tation agreeing with Einstein’ s law will satisfy the alternative law proposed, 
but not usually vice versa. 

There are doubtless other symmetrical solutions for the alternative laws 
of gravitation which are not permitted by Einstein’s law, since the differential 
equations are now of the fourth order and involve two extra boundary con- 
ditions either at the particle or at infinity. It may be asked, Why should 
these be excluded in nature? We can only answer that it may be for the 
same reason that negative mass, doublets, electrons of other than standard 

_mass, or other: theoretically possible singularities in the world, do not occur; 
the ultimate particle satisfies conditions which are at present unknown to us. 

It would seem therefore that there are three admissible laws of gravitation 
(62:2). Each can give precisely the same gravitational field of the sun, and 
all astronomical phenomena are the same whichever law is used. Small 
differences may appear in the cross-terms due to two or more attracting 
bodies; but as was shown in our discussion of the lunar theory these are too 

small to be detected by astronomical observation. Each law gives precisely 

the same mechanical phenomena, since the conservation of energy and 

momentum is satisfied. When we ask which of the three is the law of the 

actual world, I am not sure that the question has any meaning. The subject 

is very mystifying, and the following suggestions are put forward very 

tentatively. 
The energy-tensor has been regarded as giving the definition of matter, 

since it comprises the properties by which matter is described in physics. 

Our three energy-tensors give us three alternative material worlds; and the 

question is which of the three are we looking at when we contemplate the 
world around us; but if these three material worlds are each doing the same 
thing (within the limits of observational accuracy) it seems impossible to 

decide whether we are observing one or other or all three.
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To put it another way, an observation involves the relation of the ZY of 

our bodies to the ZZ of external objects, or alternatively of the respective - 

‘T’” or T’'. If these are the same relation it seems meaningless to ask which 
of the three bodies and corresponding worlds the relation is between. After 

all it is the relation which is the reality. In accepting 7, as the energy- 

tensor we are simply choosing the simplest of three possible modes of repre- 
senting the observation. 

One cannot but suspect that there is some identical relation between the 
Hamiltonian derivatives of the three fundamental invariants. If this relation 
were discovered it would perhaps clear up a rather mysterious subject. 

. 63. Gravitational flux from a particle. 

Let us consider an empty region of the world, and try to create in it one 
or more particles of small mass 6m by variations of the g,, within the region. 
By (60°12) and (60-2), 

8 | GV Gg dr = Br 8m..d8.cccccsesessseseeee: (63-1) 

and by (60°42) the left-hand side is zero because the space is initially empty. 
In the actual world particles for which 5m. ds is negative do not exist; hence it 

is impossible to create any particles in an empty region, so long as we adhere 
to the condition that the g,, and their first derivatives must not be varied on 
the boundary. To permit the creation of particles we must give up this 
restriction and accordingly resurrect the term 

5 Jev=s —gdre fz a - (ger8 (<)) ar veseaeee eee 68) 

_ which was discarded from (60° 3). On performing the first integration, (63:2) 
gives the flux of the normal component of 

gtd (=) = gi” V¥—g6[- {uy, a} + 9 {vB, BY]... (63°3) 

across the three-dimensional surface of the region. The flux is accordingly 
equal to 875 8m. ds, 

Take the region in the form of a long tube and create a particle of gravi- 
tational mass 5m along its axis. The flux (63°3) is an invariant, since dm. ds 
is invariant, so we may choose the special coordinates of § 88 for which the 
particle is at rest. Take the tube to be of radius r and calculate the flux for 
a length of tube dé=ds. The normal component of (68°3) is given by a=1 
and accordingly the flux is 

II ge V=98[— {uv 1} +9! (WB, A] dOdgat 

= Arr°ds. |- gh? {uv, 1} +93 (2 log v=9)| a (68-4), 
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which by (38'5) 

= 4rrds jes (4) — * 8 (re) - sa wi 4 8 (r sin? Be) — e* 5 ($er*r’) 

~e-8 (=) cecsessesseentanes (63°3). 

Remembering that the variations involve only 8m, this reduces to 
9° 

dorrds (- By — = 57) 

= Bir S10. dS ececccccececcseceneceeeneees (63°6). 

that these will counterbalance one another. 

This verification of the general result (68°1) for the case of a single particle 
gives another proof of the identity of gravitational mass with inertial mass. 

We sce then that a particle is attended by a certain flux of the quantity 
(63°8) across all surrounding surfaces, It is this flux which makes the presence 
of a massive particle known to us, and characterises it; in an observational 
sense the flux is the particle. So long as the space is empty the flux is the 
same across all surrounding surfaces however distant, the radius 7 of the tube 
having disappeared in the result; so that in a sense the Newtonian law of 
the inverse square has a direct analogue in Einstein’s theory. 

In general the flux is modified in passing through a region containing. 
other particles or continuous matter, since the first term on the right of (60°3) 
no longer vanishes. This may be ascribed analytically to the non-linearity of 
the field equations, or physically to the fact that the outflowing influence can 
scarcely exert its action on other matter without being modified in the process. 
In our verification for the single particle the flux due to 8m was independent 
of the value of m originally present; but this is an exceptional case due to 
symmetrical conditions which cause the integral of 7+” $y,, to vanish althou gh 
T+” is not zero. Usually the flux due to 8m will be modified if other matter 
is initially present. 

For an isolated particle mds in any region is stationary for variations of 
its track, this condition being equivalent to (56°6). Hence for this kind of 
variation the action 8a =mds in a region is stationary. The question arises 
how this is to be reconciled with our previous result (§ 60) that the principle 
of stationary action is untrue for regions containing matter. The reason is 
this:—when we give arbitrary variations to the g,,, the matter in the tube 

will in general cease to be describable as a particle, because it has lost the 
symmetry of its field*. The action therefore is only stationary for a special 
kind of variation of g,, in the neighbourhood of each particle which deforms 
the track without destroying the symmetry of the particle; it is not stationary 
for unlimited variations of the guy. . 

* It will be remembered that in deriving (56-6) we had to assume the symmetry of the particle, 

E . 10
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The fact that the variations which cause the failure of the principle of 
stationary action—those which violate the symmetry of the particles—are 
impossible in the actual world is irrelevant. Variations of the track of the 
particle are equally impossible, since in the actual world a particle cannot 
move in any other way than that in which it does move. The whole point of 
the Principle of Stationary Action is to show the relation of an actual state 
of the world to slightly varied states which cannot occur. Thus the break- 
down of the principle cannot be excused. But we can see now why it gives . 
correct results in ordinary mechanics, which takes the tracks of the particles 
as the sole quantities to be varied, and disregards the more general variations 
of the state of the world for which the principle ceases to be true. 

64. Retrospect. 

We have developed the mathematical theory of a continuum of four 
dimensions in which the points are connected in pairs by an absolute relation 
called the interval. In order that this theory may not be merely an exercise 
in pure mathematics, but may be applicable to the actual world, the quantities 
appearing in the theory must at some point be tied on to the things of 
experience. In the earlier chapters this was done by identifying the mathe- 
matical interval with a quantity which is the result of practical measurement 
with scales and clocks. In the present chapter this point of contact of theory 
and experience has passed into the background, and attention has been 
focussed on another opportunity of making the connection. The quantity 
G,.—4g,.@ appearing in the theory is, on account of its property of conserva- 
tion, now identified with matter, or rather with the mechanical abstraction 
of matter which comprises the measurable properties of mass, momentum and 
stress sufficing for all mechanical phenomena. By making the connection 
between mathematical theory and the actual world at this point, we obtain a 
great lift forward. 

Having now two points of contact with thé physical world, it should 
become possible to construct a complete cycle of reasoning. There is one 
chain of pure deduction passing from the mathematical interval to the mathe- 
matical energy-tensor. The other chain binds the physical manifestations of 
the energy-tensor and the interval; it passes from matter as now defined by 
the energy-tensor to the interval regarded as the result of measurements made 
with this matter. The discussion of this second chain still lies ahead of us. 

If actual matter had no ‘other properties save such as are implied in the 
functional form of Gi, — 49%, G, it would, I think, be impossible to make measure- 
ments with it. The property which makes it serviceable for measurement is 
discontinuity (not necessarily in the strict sense, but discontinuity from the 
macroscopic standpoint, i.e. atomicity). So far our only attempt to employ 
the new-found matter for measuring intervals has been in the study of the’ 
dynamics of a particle in § 56; we had there to assume that discrete particles
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exist and further that they have necessarily a symmetry of field; on this 
understanding we have completed the cycle for one of our most important 
test-bodies—the moving particle—the geodesic motion of which is used, espe- 
cially in astronomy, for comparing intervals. But the theory of the use of 
matter for the purpose of measuring intervals will be taken up in a more 
general way at the beginning of the next chapter, and it will be seen how 
profoundly the existence of the complete cycle has determined that outlook 
on the world which we express in our formulation of the laws of mechanics. 

It is a feature of our attitude towards nature that we pay great regard to | 
that which is permanent; and for the same reason the creation of anything 
in the midst of a region is signalised by us as more worthy of remark than 
its entry in the orthodox manner through the boundary. Thus when we 
consider how an invariant depends on the variables used to describe the 
world, we attach more importance to changes which result in creation than 
to changes which merely involve transfer from elsewhere. It is perhaps for 
this reason that the Hamiltonian derivative of an invariant gives a quantity 
of greater significance for us than, for example, the ordinary derivative. The 

' Hamiltonian derivative has a creative quality, and thus stands out in our 

minds as an active agent working in the passive field of space-time. Unless 
this idiosyncrasy of our practical outlook is understood, the Hamiltonian 
method with its casting away of boundary integrals appears somewhat arti- 
ficial; but it is actually the natural method of deriving physical quantities 
prominent in our survey of the world, because it is guided by those prin- 
ciples which have determined their prominence. The particular form of the 
Hamiltonian method known as Least Action, in which special search is made 
for Hamiltonian derivatives which vanish, does not appear at present to admit 
of any very general application. In any case it seems better adapted to give 
neat mathematical formulae than to give physical insight; to grasp the 
equality or identity of two physical quantities is simpler than to ponder over 
the behaviour of the quantity which is their difference—distinguished though - 
it may be by the important property of being incapable of existing! 

According to the views reached in this chapter the law of gravitation 
G,,==0 is not to be regarded as an expression for the natural texture of the 
continuum, which can only be forcibly broken at points where some extraneous - 
agent (matter) is inserted. The differentiation of occupied and unoccupied 

space arises from our particular outlook on the continuum, which, as explained 
above, is such that the Hamiltonian derivatives of the principal invariant G 
stand out as active agents against the passive background. It is therefore 
the regions in which these derivatives vanish which are regarded by us as 

unoccupied; and the law G,,=0 merely expresses the discrimination. made 

by this process. 
’ Among the minor points discussed, we have considered the speed of pro- 
pagation of gravitational influence. It is presumed that the speed is that 

10—2
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of light, but this does not appear to have been established rigorously. Any 
absolute influence must be.measured by an invariant, particularly the in- 
variant Bi, Br". The propagation of this invariant does not seem’ to have 
been investigated. to , 

The ordinary potential energy of a weight raised to a height is not counted 
as energy in our theory and does not appear in our energy-tensor. It is found 
superfluous because the property of our energy-tensor has been formulated 
as a general law which from the absolute point of view is simpler than the 
formal law of conservation. The potential.energy and momentum t, needed 
if the formal law of conservation is preserved is not a tensor, and must be 
regarded as a mathematical fiction, not as representing any significant con- 
dition of the world. The pseudo-energy-tensor t® can be created and destroyed 
at will by changes of coordinates; and even in a world containin g no attracting 
matter (flat space-time) it does not necessarily vanish. It is therefore im- 
possible to regard. it as of a nature homogeneous with the proper energy- 
tensor. ,



CHAPTER V 

CURVATURE OF SPACE AND TIME 

65. Curvature of a four-dimensional manifold. . 

In the general Riemannian geometry admitted in our theory the gu may 
be any 10 functions of the four coordinates 2,. a 

A four-dimensional continuum obeying Riemannian geometry can be 
represented graphically as a surface of four dimensions drawn in a Euclidean 
hyperspace of a sufficient number of dimensions. Actually 10 dimensions are 
required, corresponding to the number of the g,,.° For let (41, Yes Yas ++» Ys) be 
peewee Euclidean coordinates, and (a, %q, %3, £3) parameters on the sur- 

=f, (xy, a, , Xa, x5), eeocee ? tho =f (a, de, 2, a). 

For an: interval on the surface, the Euclidean geometry o of the y's gives 
ty 0 = dst = dy? + dy? + dye+ . Ft dy'y 

(LY + Sr Wace. 
+{e He. +i ° gel dx, dity-+ 0. 

Equating the coefficients to the given functions Sun W we have 10 partial differ- 
ential equations of the form 

te Ya Bio 
OL, an, OL, Ox, 

to be satisfied by the 10 f’s. Clearly it would not be possible to satisfy these 

MY) 

, equations with less than 10'/’s except in special cases. 

When we use the phrase “curvature” in connection with space- -time, we 

always think of it as: embedded in this way in a Euclidean space of higher 
dimensions. It is not suggested that the higher space has any existence; 3 the 

perties of the world. It must be remembered too that a great variety of 
four-dimensional surfaces in 10 dimensions will possess the same metric, ie. be 
applicable to one another by bending without stretching, and any one of these 
can be chosen to represent the metric of space-time. Thus a geometrical pro- 
perty of the chosen representative surface need not necessarily bea Property 
belonging intrinsically to the space-time continuum. 

A four-dimensional surface free to twist about in six additional dimensions 

has bewildering possibilities. We consider first the simple case in which the 
surface, or at least a small portion of it, can be. drawn i in Euclidean space of 
five dimensions, . co
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Take a point on the surface as origin. Let (a;,, 2, 2, x,) be rectangular 
coordinates in the tangent plane (four-dimensional) at the origin; and let the 
fifth rectangular axis along the normal be z. Then by Euclidean geometry 

dst == dx? + dae + da? + dae +z? ...ccccecee (65°1), 
imaginary values of ds corresponding as usual to real distances in space. The 
four-dimensional surface will be specified by a single equation between the 
five coordinates, which we may take to be 

: z= f (a, Xp, Hs, 2). 
If the origin is a regular point this can be expanded in powers of the z’s, The 
deviation from the tangent plane is of the second order compared with dis- 
tances parallel to the plane; consequently z does not contain linear terms in 
the z's. The expansion accordingly starts with a homogeneous quadratic 
function, and the equation is of the form 

Qe py Lp Ly. crcesevercecccececcee. ‘esses s(G5'2), 
correct to the second order. For a fixed value of z the quadric (65:2) is called 
the indicatriz. 

The radius of curvature of any normal section of the surface is found by 
the well-known method. If ¢ is the radius of the indicatrix in the direction of 
the section (direction cosines 1,, Jp, l,, 4,), the radius of curvature is 

B 

ea Curlaly” 
_In particular, if the axes are rotated so as to coincide with the principal axes © of the indicatrix, (65:2) becomes 

22 = hyo? + hyxe + kyag +- ky,x2 
and the principal radii of curvature of the surface are the reciprocals of ky, ko, Its, hy. 

Differentiating (65:2) 
dz=a,,2,dx,, d= Any LpALy. AezloALy. 

Hence, substituting in (65:1) - 
— ds? = da? + dae + dag + dn? + (dyer pL) dx, dx, 

for points in the four-dimensional continuum. Accordingly 
Yur = GP A Apr Qe pla. ecececcccececccscecees (65:4). 

Hence at the origin the Qu» are Euclidean; their first derivatives vanish ; and their second derivatives are given by 

  

= (QyyQe, + Ay Ane), 

by (35°). . Calculating the Riemann-Christoffel tensor by (34'5), since the first deri- vatives vanish, 

  

  

Kv op 2 Chae Ox, Ox, OL, Ox, Ox, ‘0 02 ze.) 

= Qn Ag, - pa Ayo OS nn (65°51).



  

65 CURVATURE OF A FOUR-DIMENSIONAL MANIFOLD 151 

Hence, remembering that the g?* have Euclidean values — an 

Guy = 97? Buvop = — py (Gy + Gog + Ogg + Oy) + Apa ya.++-.. (65°52). 

In particular 

Gy=—ay (yy + og + Ogg + Gs) + Oy + Og + as + ag 

= (Gyn — 11 Qog) + (As — G11 Ug) +H (Og — Oy gs) -eeeeeeee (65°53). 
Also 

G=9""Gi=— n— Ge —- Ga—- Gy . 

= — 2 {(@— dn An) +(A%3— On Ogg) + (xp Dy Ot) + (%og— opp) 

+ (Go4— Conds) + (Ogg — Ags has)} seeseeeesreecseseeesseeeeseeceeees (65°54). 
When the principal axes are taken as in (65'3), these results become 

Gy = k, (he + k, + Ay) 

Gg = — hey (Fy + eg + iy) 5 ata} 

and G =2 (hha th ky t+ hyhyt Kok t+ hgh thyhy) occ. (65°6). 

The invariant G has thus a comparatively simple interpretation in terms 
of the principal radii of curvature. It is a generalisation of the well-known 
invariant for two-dimensional surfaces 1/p,p2, or k,k,. But this interpretation 

is only possible in the simple case of five dimensions. In general five dimensions 
are not sufficient to represent even the small portion of the surface near the 
origin; for if we set G,,=0 in (65°55), we obtain k, = 0, and hence by (65°51) 
Buvop = 0. Thus it is not possible to represent a natural gravitational field 
(Guy = 0, Burep :# 0) in five Euclidean dimensions. 

In the more general case we continue to call the invariant G the Gaussian 
curvature although the interpretation in terms of normal curvatures no longer 
holds. It is convenient also to introduce a quantity called the radius of 

spherical curvature, viz. the radius of a hypersphere which has the same 
Gaussian curvature as the surface considered *. 

Considering the geometry of the general case,in 10 dimensions the normal is 
a six-dimensional continuum in which we can take rectangular axes 2, 2), ... Z. 

The surface is then defined by six equations which near the origin take the 

seecseeseeaeesesseseseesens (65°55) 

form . 

Q2p = Arp Luly (r=1, 2... 6). 

The radius of curvature of a normal section in the direction J, is then 

? _ 1 
PO ett ae ta 20) V(Gauvlaly) Foe F olaly yy 

It is, however, of little profit to develop the properties of normal curvature, 

which depend on the surface chosen to represent the metric of space-time 

and are not intrinsic in the metric itself. We therefore follow a different plan, 

introducing the radius of spherical curvature which has invariant properties. 

* A hypersphere of four dimensions ig by definition a four-dimensional surface drawn in five 

dimensions so that (65°6) applies to it. Accordingly if its radius is R, we have G=12/R®, For 
three dimensions G=6/R?; for two dimensions G=2/R?.
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Reverting for the moment to five dimensions, consider the three-dimensional 
space formed by the section of our surface by z,=0. Let Gy) be its Gaussian 
curvature. Then Gq is formed from G by dropping all terms containing the 
suffix 1—a dimension which no longer enters into consideration. Accordingly 

G— G) consists of those terms of G which contain the suffix 1 1; and by (65°53) 
and (65°54) we have 

EG — Gy) Hr Gy cececeececssceenceees (65°71). 

Introducing the value g, =~ 1 at the origin oe 

Gi — $9 GF = 3 Gey... ecceeecccseceesenvees (65°72). 

This result obtained for five dimensions is perfectly general. From the 
manner in which (65:4) was obtained, it will be seen that each of the six 2’s will 
make contributions to g,, which are simply additive; we have merely to sum 
QprQer Xz for the six values of ay,ao, contributed by the six terms dz,?, All the 

subsequent steps involve linear equations and the work will hold for six z’s 
just as well as for one z. Hence (65°72) is true in the general case when the 
representation requires 10 dimensions. 

Now consider the invariant quadric 

(Cv FG pr @) diy day = Boece ceececessecseeees (65°81). 
Let p, be the radius of this quadric in the a, direction, so that dx, = (p:, 0, 0, 0) 
is a point on the quadric; the equation gives 

, (Gy _- 49nG@) pr= 3, 

so that by (65°72) - Gey =O cececccseeseccescevesecseees (65°82). 
pr 

But for a hypersphere of radius R of three dimensions (hy = =h=k,=1/R; 
k, disappears) the Gaussian curvature is 6/R% Hence p, is the radius of 
spherical curvature of the three- dimensional section of the world perpendicular 
to the axis a. 

Now the quadric (65: 81) i is invariant, so that the axis x, may be taken in 
any arbitrary direction. Accordingly we see that— 

Lhe radius of the quadric (G.,—4 Jur G) dada, = =3 in any dir ection as equal 
to the radius of spherical curvature of the corresponding three-dimensional 
section of the world. 

We call this quadric the quadric of curvature. 

66. Interpretation of Einstein’s law of gravitation. 
We take the later form of Einstein’s law (87°4) 

© Ay = Aap. ceeeeeeeeeeeeeeseteeeteeeeens (66-1) 
in empty space, A being a universal constant at present unknown but so small 
as not to upset the agreement with observation established for the original 
form Gy,=0. We at once obtain G@= 4a, and hence | 

Gur — 3 9uvG =— Aur
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Substituting in (65°81) the quadric of curvature becomes 

—Agudx, dx, = 3, . 

or — Us? = BIA wc eecceceeeveeeees Veneeceeees (66-2). 

That is to say, the quadric of. curvature is a sphere of radius /(8/A), and the 

radius of curvature in every direction* and at every point in empty space has 

the constant length /(3/A). oe 

Conversely if the directed radius of curvature in empty space is homo- 

geneous and isotropic Einstein’s law will hold. 

The statement that the radius of curvature is a constant length requires 

more consideration before its full significance is appreciated. Length is not 

absolute, and the result can only mean constant relative to the material standards 

of length used in all our measurements and in particular in those measurements 

which verify Guy=2Agu»- In order to make a direct comparison “the material 

unit must be conveyed to the place and pointed in the direction of the length 

to be measured. It is true that we often use indirect methods avoiding actual 

transfer or orientation; but the justification of these indirect methods is that 

they give the same result as a direct comparison, and their validity depends 

on the truth of the fundamental laws of nature. We are here discussing the 

most fundamental of these laws, and to admit the validity of the indirect 

methods of comparison at this stage would land us in a vicious circle. Ac- 

cordingly the precise statement of our result is that the radius-of curvature 

at any point and in any direction is in constant proportion to the length of a 

specified material unit placed at the same point and orientated in the same 

direction. , 

This becomes more illuminating if we invert the comparison— 

The length of a specified material structure bears a constant ratio to the 

radius of curvature of the world at the place and in the direction in which tt 

UleS cceccececcccvcccccececsccesarenseeaeacosconsesenssers secceeeseesceeetseeneesesee(
G6'3). 

The law no longer appears to have any reference to the constitution of an - 

empty continuum. It is a law of material structure showing what dimensions 

a specified collection of molecules must take up in order to adjust itself to 

equilibrium with surrounding conditions of the world. 

The possibility of the existence of an electron in space is a remarkable - 

phenomenon which we do not yet understand. The details of its structure 

must be determined by some unknown set of equations, which apparently 

admit of only two discrete solutions, the one giving a negative electron and 

the other a positive electron or proton. If we solve these equations to find 

* For brevity I use the phrase “radius of curvature in a direction” to mean the radius of 

spherical curvature of the three-dimensional section of the world at right angles to that direction. 

There is no other radius of curvature associated with a direction likely to be confused with it.
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the radius of the electron in ‘any direction, the result must necessarily take 
the form 

radius of electron in given direction = numerical constant x some 
function of the conditions in the space into which the electron 
was inserted. 

And since the quantity on the left is a directed length, the quantity on the 
right must be a directed length. We have just found one directed length 
characteristic of the empty space in which the electron was introduced, viz. 
the radius of spherical curvature of a corresponding. section of the world. 
Presumably by going to third or fourth derivatives of the Juv other independent 
directed lengths could be constructed; but that seems to involve an unlikely 
complication. There is strong ground then for anticipating that the solution 
of the unknown equations will be 

radius of electron in any direction = numerical constant x radius of 
curvature of space-time in that direction. 

This leads at once to the law (66°3). 
As with the electron, so with the atom and aggregations of atoms forming 

the practical units of material structure. Thus we see that Einstein’s law of 
gravitation is the almost inevitable outcome of the use of material measuring- 
appliances for surveying the world, whatever may be the actual laws under 
which material structures are adjusted in equilibrium with the empty space 
around them. , 

Imagine first a world in which the curvature, referred to some chosen 
(non-material) standard of measurement, was not isotropic. An electron in- 
serted in this would need to have the same anisotropy in order that it might 
obey the same detailed conditions of equilibrium as a symmetrical electron in 
an isotropic world. The same anisotropy persists in any material structure 
formed of these electrons. Finally when we measure the world, Le. make com- 
parisons with material structures, the anisotropy occurs on both sides of the 
comparison and is eliminated. Einstein’s law of gravitation expresses the 
result of this elimination. The symmetry and homogeneity expressed by 
Einstein’s law is not a property of the external world, but a property of the 
operation of measurement. , \ ; 

From this point of view it is inevitable that the constant » cannot be 
zero; so that empty space has a finite radius of curvature relative to familiar 
standards. An electron could never decide how large it ought to be unless 
there existed some length independent of itself for it to compare itself with. 

It will be noticed that our rectangular coordinates (a, 22, #3, 2) in this and the previous section approximate to Euclidean, not Galilean, coordinates. 
Consequently 2, is imaginary time, and Gw is not in any real direction 
in the world. There is no radius of curvature in a real timelike direction. ~ This does not mean that our discussion is limited to three dimensions; it includes all directions in the four-dimensional world outside the light-cone,
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and applies to the space-dimensions of material structures moving with any 
speed up to the speed of light. The real quadric of curvature terminates at 
the light-cone, and the mathematical continuation of it lies not inside the 
cone but in directions of imaginary time which do not concern us. 

By consideration of extension in timelike directions we obtain a confirma- 
tion of these views, which is, I think, not entirely fantastic. We have said that 

an electron would not know how large it ought to be unless there existed in- 

dependent lengths in space for it to measure itself against. Similarly it would 
not know how long it ought to exist unless there existed a length in time for 

it to measure itself against. But there 1s no radius of curvature in a time-like 
direction ; so the electron does not know how long it ought to exist. Therefore 
it just goes on existing indefinitely. 

The alternative laws of gravitation discussed in § 62 would be obtained if 
the radius of the unit of material structure adjusted itself as a definite fraction 
not of the radius of curvature, but of other direéted lengths (of 2 more com- 
plex origin) characteristic of empty space-time. 

In § 56 it was necessary to postulate that the gravitational field due to an 

ultimate particle of matter has symmetrical properties. This has now been 

justified. We have introduced a new and far-reaching principle into the 
relativity theory, viz. that symmetry itself can only be relative; and the 
particle, which so far as mechanics is concerned is to be identified with its 

- gravitational field, is the standard of symmetry. We reach the same result if 

we attempt to define symmetry by the propagation of light, so that the cone 
ds=0 is taken as the standard of symmetry. It is clear that if the locus 
ds = 0 has complete symmetry about an axis (taken as the axis of t) ds? must 
be expressible by the formula (38°12). 

The double-linkage of field and matter, matter and field, will now be 
realised. Matter is derived from the fundamental tensor g,, by the expression 
Gi.—49.G; but it is matter so derived which is initially used to measure 

the fundamental tensor g,,. We have in this section considered one simple 
consequence of this cycle—the law of gravitation. It needs a broader analysis 
to follow out the full consequences, and this will be attempted in Chapter VII, 
Part II. 

67. Cylindrical and spherical space-time. 

According to the foregoing section % does not vanish, and there is a 
small but finite curvature at every point of space and time. This suggests 

the consideration of the shape and size of the world as a whole. 

Two forms of the world have been suggested— 
(1) Einstein’s cylindrical world. Here the space-dimensions correspond 

to a sphere, but the time-dimension is uncurved. 

- (2) De Sitter’s spherical world. Here all dimensions are spherical ; but 
since it is imaginary time which is homogeneous with the space-coordinates, 
sections containing real time become hyperbolas instead of circles.
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We must describe these two forms analytically. A point on the surface of 
a sphere of radius 9 is described by two angular variables 6, ¢, such that 

— dst = R? (dé? + sin? 0d¢"). 
Extending this to three dimensions, we have three angular variables such that 

. —ds?= R? {dy + sin? y (d6* + sin? @d¢g®)} «0... (67-11). 

Accordingly in Einstein’s form the interval is given by 

ds? = — Redy? — R? sin’ y (dé? + sin? 0d¢*) + dé? ...... (67°12). 

Of course this form applies only to a survey of the world on the grand 
scale, Trifling irregularities due to the aggregation of matter into stars and 
stellar systems are treated as local deviations which can be disregarded. 

Proceeding from the origin in any direction, Ry is the distance determined 
by measurement with rigid scales. But the measured area of a sphere of radius 
Ry is not 47 Rx? but 47K? sin? y. There is not so much elbow-room in distant 
parts as Euclid supposed. We reach a “greatest sphere” at the distance 47R; 
proceeding further, successive spheres contract and decrease to a single point 
at a distance 7R—the greatest distance which can exist. 

The whole volume of space (determined by rigid scales) is finite and equal 
to i Te, oe 

[anne sinty. Rdy=20? Ro ceecccccsecessese. (67-2), 
Although the volume of space is finite, there is no boundary ; nor is there any 
centre of spherical space. Every point stands in the same relation to the rest 
of space as every other point. . 

To obtain de Sitter’s form, we generalise (67°11) to four dimensions (i.e. a 
spherical four-dimensional surface drawn in Euclidean space of five dimensions). 
We have four angular variables a, ¢, 0, ¢, and 

— ds = R'[dw? + sin® o {dg + sin® ¢(d6? + sin? @d¢*)}] ...(67°31). 
In order to obtain a coordinate-system whose physical interpretation is more 
easily recognisable, we make the transformation - 

‘COS @ = Cos ¥ cos tt, 

cot €= cot sin ié, 
which gives  siny =sin {sino 

tan it = cos {tan | 

Working out the results of this substitution, we obtain 
ds? = — Redy? — R' sin? y (d6? + sin* Od¢$*) + R? cos? x. di'...(67°33). 

So far as space (y, 6, ) is concerned, this agrees with Einstein’s form 
(67:12); but the variable ¢, which will be regarded as the “time”* in this 
world, has different properties. For a clock at rest (x, 9, @ =const.) we have 

AS = RCosydt oo... cseeececessescseeeeees (67:4), . 

veseees seseseeteereaveee(67'32). 

* The velocity of light at the origin is now R. In the usual units the time would be Re.
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so that the “time” of any cycle is proportional to secy. The clock-beats 
become longer and longer as we recede from the origin; in particular the 
vibrations of an atom become slower. Moreover we can detect by practical 
measurement this slowing down of atomic vibrations, because it is preserved 
in the transmission of the light to us. The coordinates (67°33) form a statical 
system, the velocity of light being independent of ¢; hence the light-pulses 
are all delayed in transmission by the same “time” and reach us at the same 
intervals of t as they were emitted. Spectral lines emanating from distant 
sources at rest should consequently appear displaced towards the red. 

At the “horizon” y=47, any finite value of ds corresponds to an infinite. 
dt. It takes an infinite “time” for anything to happen. All the processes of 
nature have come to a standstill so far as the observer at the origin can have 
evidence of them. 

But we must recall that by the symmetry ‘of the original formula (67°31), 
any point of space and time could be chosen as origin with similar results. 
Thus there can be no actual difference in the natural phenomena at the horizon 
and at the origin. The observer on the horizon does not perceive the stoppage 
—in fact he has a horizon of his own at a distance $27# where things appear 
to him to have come to a standstill. / 

Let us send a ray of light from the origin to the horizon and back again. 
(We take the double journey because the time-lapse can then be recorded by 
a single clock at the origin ; the physical significance of the time for a single 

journey is less obvious.) Setting ds=0, the velocity of the light is given by 

0 =— Rdy'? + BR’ cos? x dé, - 

so that. dt = +secydy, . 

whence t= 4 log tan Aa +hx) -ccceeeleeedeeceee '.(67'5). 

This must be taken between the limits y = 0 and 47; and again with reversed 

sign between the limits $7 and 0. The result is infinite, and the journey can 

never be completed. - 

De Sitter accordingly dismisses the paradox of the arrest of time at the 

horizon with the remark that it only affects events which happen before the 

beginning or after the ‘end of eternity. But we shall discuss this in greater, 

detail in§ 70. 

68. Elliptical space. 

The equation (67°11) for spherical space, which appears in both de Sitter’s 

and Einstein’s form of the interval, can also be construed as representing a 

slightly modified kind of space called “elliptical space.” From the modern 

standpoint the name is rather unfortunate, and does not in any way suggest 

its actual nature. We can approach the problem of elliptical space in the 

following way—— . ; 

Suppose that in spherical space the physical processes going on at every 

point are exactly the same as those going on at the antipodal point, so that 

 



158 , ELLIPTICAL SPACE CH. V 

one half of the world is an exact replica of the other half, Let ABA'B" be 
four points 90° apart on a great circle. Let us proceed from B’, via A, to B; 
on continuing the journey along BA’ it is impossible to tell that, we are not 
repeating the journey B’A already performed. We should be tempted to think 
that the are B’A was in fact the immediate continuation of AB, B and B’ 

' being the same point and only represented as wide apart through some fault 
in our projective representation—just as in a Mercator Chart we see the same 
Behring Sea represented at both edges of the map. We may leave to the’ 
metaphysicist the question whether two objects can be exactly alike, both 
intrinsically and in relation to all surroundings, and yet differ in identity ; 
physics has no conception of what is meant by this mysterious differentiation 
of identity; and in the case supposed, physics would unhesitatingly declare 
that the observer was re-exploring the same hemisphere, 

Thus the spherical world in the case considered docs not consist of two 
similar halves, but of a single hemisphere imagined to be repeated twice over 
for convenience of projective representation. The differential geometry is the 
same as for a sphere, as given by (67°11), but the connectivity is different; just 
as a plane and a cylinder have the same differential geometry but different 
connectivity. At the limiting circle of any hemisphere there is a cross-con- 
nection of opposite ends of the diameters which it is impossible to represent graphically; but that is, of course, no reason against the existence of the 
cross-connection. 

This hemisphere which returns on itself by cross-connections is the type of elliptical space. In what follows we shall not need to give separate con- sideration to elliptical space. It is sufficient to bear in mind that in adopting 
spherical space we may be representing the physical world in duplicate; for example, the volume 27*R¥ already given may refer to the duplicated world. 

The difficulty in conceiving spherical or elliptical space arises mainly be- cause we think of space as a continuum in which objects are located. But it was explained in § 1 that location is not the primitive conception, and is of the nature of a computational result based on the more fundamental notion of extension or distance. In using the word “space” it is difficult to repress irrelevant ideas; therefore let us abandon the word and state explicitly that we are considering a network of intervals (or distances, since at present we are not dealing with time). The relation of interval or distance between two points is of some transcendental character comparable, for example, with a difference of potential or with a chemical affinity ; the reason why this par- ticular relation is always associated with geometrical ideas must be sought in human psychology rather than in its intrinsic nature. We apply measure- numbers to the interval as we should apply them to any other relation of the two points; and we thus obtain a network with a number attached to every chord of the net. We could then make a string model of the network, the length of each string corresponding to the measure-number of the interval.
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Clearly the form of this model—the existence or non-existence of unexpected . 
cross-connections—cannot be predicted a prior; it must be the subject of 
observation and experiment. It may turn out to correspond to a lattice drawn 
by the mathematician in a Euclidean space; or it may be cross-connected in 
a way which cannot be represented in a. lattice of that kind. Graphical repre- 
sentation is serviceable as a tool but is dangerous as an obsession. If we can 
find a graphical representation which conforms to the actual character of the 

. network, we may employ it; but we must not imagine that any considerations 
as to suitability for graphical representation have determined the design of 
the network. From experience we know that small portions of the network 
do admit of easy representation as a lattice in flat space, just as small portions 
of the earth’s surface can be mapped on a flat sheet. It does not follow that 
the whole earth is flat, or that the whole network can be represented in a 
space without multiple connection. 

69. Law of gravitation for curved space-time. 

By means of the results (43°5) the G,, can be calculated for either Einstein’s 
or de Sitter’s forms of the world. De Sitter’s equation (67°33) is of the e standard 
form with y substituted for r, and 

, A= Rh, e=R'sin*y/x, e” = RL? cos*y, 

thus V=0, pw =2coty—2/y, v=—2Ztany, 

pe’ = — 2 cosec?y + 2/x7, v” =—2 sec? y, 

Hence by (43° 5) we find after an easy reduction 

Gu=—-3, Gy=—3sin?xy, Gy=—S3sin?yxsin? 6, G.=3cos' x, 

These are equivalent to 
3 

Gy = FEGMe cere tee eteteceteteeeees (69°11). 

De Sitter’s world thus corresponds to the revised form of the law of gravitation 

Guy = Gus 

ss 3 
and its radius is given by ly 7 (69°12). 

Einstein’s form (67°12) gives similarly 

A=, & =f sintx/y’, e’ =1, 
from which by (43°5) 

Gyu=—-2, Gu=—2sin?y, G3=—2 sin? y sin?@, G,,=0...(69°21), 

It is not possible tc reconcile these values with the law G,,=Ag,,, owing to 
the vanishing of G,,. Einstein’s form cannot be the natural form of empty 

space ; but it may nevertheless be the actual form of the world if the matter 
in the world is suitably distributed. To determine the necessary distribution 
we must calculate the energy-tensor (54°71) 

— 8% Duy = Guy — $9 nv G + Quer
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We find — =8rt,=(- at r) In 

~8r24=(-F +2) gu) 
Since % is still at_our disposal, the distribution of this energy-tensor is inde- terminate. But it‘is noted that within the stellar system the speed of matter, whether of molecules or of stars, is generally small compared with the velocity of light. There is perhaps a danger of overstressing this evidence, since astro- nomical research seems to show that the greater the scale of our exploration the more divergent are the velocities; thus the spiral nebulae, which are perhaps the most remote objects observed, have speeds of the order 500 km. per sec.—at least ten times greater than the speeds observed in the stellar _ System. It seems possible that at still greater distances the velocities may increase further. However, in Einstein’s solution we assume that the average velocity of the material particles is always small compared with the velocity of light; so the general features of the world correspond to : , Ly = Tm = Tog = 0, Ls = p, T=po, ' where p, is the average density (in natural measure) of the matter in space, 1 ; Hence by (698) A=, Spe (694). 
Accordingly if Af is the total mass in the universe, we have by (67:2) 

M= 27 Rp, . , 
SBT eee ccecccccteseececs, (69°5). F can scarcely be less than 101 Kilometres since the distances of some of the globular clusters exceed this, Remembering that the §ravitational mass of 

extreme—a world containing as much matter as it can hold. This view denies any fundamental cleavage of the theory in regard to the two forms, regarding
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70. Properties of de Sitter’s spherical world. 

If in (67:33) we write 
.r=Rsiny, 

we obtain ds? = — dr? — 1d? — r? sin? Od¢? + ydt? (701) where — yel—-rRal-gae fl ; 

and the customary unit of ¢ has been restored. This solution for empty space 
has already been given, equation (45°6). 

We have merely to substitute this value of y in ‘the investigations of 
§ 38, 39, in order to obtain the motion of material particles and of light-waves 
in de Sitter’s empty world. Thus (39°31) may be written 

ait By (ae) ~7 (Gs) +407 (zi) = 0 
Whence 

dr’ har (dr od 1 
ae 7 Toe (ge “y+r(- ary (8 V+ 4 xr (l—4ar + (@ =) 

, ae (70°21). 
For a particle at rest 

dr db _ dt\? 
Bo Gr (|) =r 

Hence oe SANT Lecce s cece eeceeeeeeeceeaees (70°22). 

Thus a particle at rest will not remain at rest unless it is at the origin; 
but will be repelled from the origin with an acceleration increasing with the 
distance. A number of particles initially at rest will tend to scatter, unless 
their mutual gravitation is sufficient to overcome this tendency. 

It can easily be verified that there is no such tendency in Einstein’s world. 
A particle placed anywhere will remain at rest. This indeed is necessary for 
the self-consistency of Einstein’s solution, for he requires the world to be 
filled with matter having negligible velocity. It is sometimes urged against 
de Sitter’s world that it becomes non-statical as soon as any matter is inserted 
in it. But this property is perhaps rather in favour of de Sitter’s theory than 
against it, 

One of the most perplexing problems of cosmogony is the great speed of 

the spiral nebulae. Their radial velocities average about 600 km. per sec. and 
there is a great preponderance of velocities of recession from the solar system. 
It is usually supposed that these are the-most remote objects known (though 

this view is opposed by some authorities), so that here if anywhere we might 
look for effects due to a general curvature of the world. De Sitter’s theory 
gives a double explanation of this motion of recession; first, there is the 
general tendency to scatter according to equation (70° 22); second, there is 

the general displacement of spectral lines to the red in distant objects due to 

the slowing down of atomic vibrations (67°4) which would be erroneously in- 

terpreted as a motion of recession. 

E. Il
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The most extensive measurements of radial velocities of spiral nebulae 
have been made by Prof. V. M. Slipher at the Lowell Observatory. He has 
kindly prepared for me the following table, containing many unpublished 
results. It is believed to be complete up to date (Feb. 1922). For the nebulae 
marked (*) the results have been closely confirmed at other observatories; 

those marked (f) are not so accurate as the others. The number in the first 
column refers to the “ New General Catalogue,” Memoirs R.A.S,, vol. 49. One 
additional nebula n.c.c, 1700 has been observed by Pease, who found a large 
receding velocity but gave no numerical estimate. 

RaDIAL VELOCITIES OF SPIRAL NEBULAE 

+ indicates receding, — approaching 

  

N.G.0. RA, Dec. Rad. Vel. N.G.C. RA. Dec. Rad. Vel. 
: hom of km. per see, hom °  * km. per sec 

221 038 +4026 — 300 4151* 12 6 +439 51 + 980 
224* 038 +4050 =— 300 4214 1212 +3646 + 300 
278t 047 +47 7 + 650 4258 1215 +4745 +4 500 
404 1 5 +3517 -— 4382t 1221 +1838 -+ 500 
584+ 127 -717 ~~ 241800 4449 12 24 +4432 + 200 
598* 129 +3015 — 260 4472, 1225 +827 4+ 850 
936 224 -—- 131. +1800 4486t 12927 41250 + 800 

1023 235 +3843 + 300 4526 1230 +8 9 + 580 
1068* 239 —-021 +1120 4565t 1232 +2626 +1100 
2683 848 +3343 + 400 . 4594* 1236 -1111 +1100 
2841+ 916 +5119 + 600 4649 1240 +12 0 +1090 
3031 949 +6927 — 30 4736 1247 +4133 + 290 
3034. 949 +70 5 + 290 4826 1253 +22 7 4=+4 150 
3115¢ 10 1 = 720 + 600 _ 5005 13 7 =+8729 + 900 
3368 1042 +1214 + 940. 5055 1312 +4237 + 450 
3379* 1043 +13 9 + 780 5194 13 26 +4736 + 270 
3489t 1056 +1420 + 600 5195¢ 1327 447 41 + 240 © 
3521 ll 2 +024 + 730 5236+ 1332 -92997 + 500 
3623 1115 +1332 -+ 800 5866 15 4 +456 4 + 650 
3627 1116 41326 + 650 7331 22 33° +3323 4+ 500 
41llt 12 3 +4331 + 800 

The great preponderance of positive (receding) velocities is very striking ; 
but the lack of observations of southern nebulae is unfortunate, and forbids a 
final conclusion. Even if these also show a preponderance of receding veloci- 
ties the cosmogonical difficulty is perhaps not entirely removed by de Sitter’s 
theory. It will be seen that twot nebulae (including the great Andromeda 
nebula) are approaching with rather high velocity and these velocities happen 
to be exceptionally well determined. In the full formula (70-21) there are no 
terms which under any reasonable conditions encourage motion towards the 
origin§. It is therefore difficult to account for these motions even as excep- 
tional phenomena; on the other hand an approaching velocity of 300 km. per 
sec. is about the limit occasionally attained by individual stars or star clusters. 

= N.G.c, 221 and 224 may probably be counted as one system. The two approaching nebulae 
are the largest spirals in the sky. 

§ We are limited to the region in which (1 - 4Ar*) is positive since light cannot cross the barrier.
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- The conservation of energy is satisfied in de Sitter’s world; but from the 
practical standpoint it is abrogated in large scale problems such as that of 
the system of the spirals, since these are able to withdraw kinetic energy 
from a source not generally taken into account. 

h dr Me ct 

3G: 5) *7 

becomes on substituting for y 

Equation (39°44) 

é Been ees 
Ar do 

or writing u=I1fr (5) tu as c —gN+ 755 #. 

Whence, differentiating . 

2 x Gptus-pe sccaachesessseataveeneeees (70°) 

The orbit is the same as that of a particle under a repulsive force varying 
directly as the distance. (This applies only to the form of the orbit, not to 
the velocity in the orbit.) For the motion of light the constant of areas A is 
infinite, and the tracks of light-rays are the solutions of © 

dtu 

ag 

Le. straight lines. Determination of distance by parallax-measurements rests 
on the assumption that light is propagated in straight lines, and hence the 
method is exact in this system of coordinates. In so far as the distances of 
celestial objects are determined by parallaxes or parallactic motions, the 
coordinate 7 will agree with their accepted distances. This result may be 
contrasted with the solution for the field of a particle in § 38 where the coordi- 
nate r has no immediate observational significance. Radial distances deter- 
mined by direct operations with measuring-rods correspond to Ry, not r. 

The spectroscopic radial velocity is not exactly equivalent to dr/dt, but 
the divergence is unimportant. A pulse of light emitted by an atom situated 

at r= Rsin y at time ¢ will reach the observer at the origin at time ¢’, where 

by (67°5) 

at 1=0, 

t =t+ log tan(¢a7+4yx), 

so that for the time-interval between two pulses 

dt’ = dt +secydy 

dy\ dé 
= (a +s0e0y dst 

= (see ut sec? y “x ds, by (67:33) 

11—2
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neglecting the square of the velocity of the atom. If dt is the time for a 
‘similar atom at rest at the origin, , 

“= 24, 2X diy sec x + sec? y at 

= sec x + sec? y 5 a so eaeeeccnensonssesceens (70°4). 

The first term represents the general shift to the red dependent on position 
and not on velocity. Assuming that it has been allowed for, the remaining 
part of the shift corresponds to a velocity of sect instead of a . The 
correction is scarcely of practical importance. 

The acceleration 4Ar found in (70-22), if continued for the time Ry taken 
by the light from the object to reach the origin, would cause a change of 
velocity of the order 427? or r2/R2, The Doppler effect of this velocity would 
be roughly the same as the shift to the red caused by the slowing down of 
atomic vibrations. We may thus regard the red shift for distant objects at 
rest as an anticipation of the motion of recession which will have been attained 
before we receive the light. If de Sitter’s interpretation of the red shift in 
the spiral nebulae is correct, we need not regard the deduced large motions 
of recession as entirely fallacious; it is true that the nebulae had not these 
motions when they emitted the light which is now examined, but they have 
acquired them by now. . Even the standing still of time on the horizon becomes 
intelligible from this point of view; we are supposed to be observing a system 
which has now the velocity of light, having acquired it during the infinite time which has elapsed since the observed light was emitted. 
_ Whe following paradox is sometimes found puzzling. Take coordinates for 
an observer A. at rest at the origin, and let B be at-rest at the time ¢ ata considerable distance from the origin. The vibrations of an atom at B are 
slower (as measured in the time ¢) than those of an atom at A, and since the coordinate-system is static this difference will be detected experimentally by any observer who measures the frequency of the light he receives, Accordingly 
B must detect the difference, and conclude that the light from A is displaced towards the violet relatively to his standard atom. This is absurd since, if we choose B as origin, the light from A should be displaced towards the red. The fallacy lies in ignoring what has happened during the long time of propaga- tion from A to Bor Bto A ; during this time the two observers have ceased to be in relative rest, so that compensating Doppler effects are superposed, 

To obtain a clearer geometrical idea of de Sitter’s world, we consider only one dimension of space, neglecting the coordinates 6 and f. Then by (67:31) 
—ds?= R? (dw + sin? w df?) = R? (dx? — cos? ydt?) 

=da?+dy+de, © |



70. PROPERTIES OF DE SITTER’S SPHERICAL WORLD 165 

where a= Rsinwcos f= Reosy sin it, 

y=Rsinwsing=Rsiny, 

z=Rcosw = Ros x cos tt, 

and - py psa Rr. 

. It will be. seen that real values of y and t correspond to imaginary 
values of w and ¢,and accordingly for real events 2 is imaginary and y and 
z are real. Introducing a real coordinate §=—7z, real space-time will be 
represented by the hyperboloid of one sheet with its axis along the axis of £, 

, yPt2—- P= R 

the geometry being of the Galilean type | 

2 ds? = d&— dy? — dz?, 

We have _ r=Rsiny=y, 

tanht=—i tan it=—iz/e= Ele; 

so that the space-partitions. are made by planes perpendicular to the axis of 
y, and the time-partitions by planes through the axis of y cutting the hyper- 
boloid into lunes. 

The light-tracks, ds = 0, are the generators of the hyperboloid. The tracks 
of undisturbed particles are (non-Euclidean) geodesics on the .hyperboloid; 
and, except for y=0, the space-partitions will not be geodesics, so that 
particles do not remain at rest. 

The coordinate-frame (7, t) of a single observer does not cover the whole 
world. The range from t=—o to t=+ 00 corresponds to values of Elz 

between +1. The whole experience of any one observer of infinite longevity 
is comprised within a 90° lune. Changing the origin we.can have another 
observer whose experience covers a different lune. The two observers cannot 
communicate the non-overlapping parts of their experience, since there are 
no light-tracks (generators) taking the necessary course. 

A further question has been raised, Is de Sitter’s world really empty? In 

formula (70:1) there is a singularity at r = /(8/d) similar to the singularity 
at 7 = 2m in the solution for a particle of matter. Must we not suppose that 
the former singularity also indicates matter—a “mass-horizon” or ring of 

peripheral. matter necessary in order to distend the empty region within. If 
so, it would seem that de Sitter’s world cannot exist without large quantities | 
of matter any more than Einstein’s; he has merely swept the dust away into 

unobserved corners. 

A singularity of ds? does not necessarily indicate material particles, for 
we can introduce or remove such singularities by making transformations of 
coordinates. It is impossible to know whether to blame the world-structure 

‘ or the inappropriateness of the coordinate-system. In a finite region we avoid 
this difficulty by choosing a coordinate-system initially appropriate—how this
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is done is very little understood—and permitting only transformations which 
have no singularity in the region. But we can searcely apply this to a 
consideration of the whole finite world since all the ordinary analytical trans- 
formations (even a change of origin) introduce a singularity somewhere. If 
de Sitter’s form for an empty world is right it is impossible to find any 
coordinate-system which represents the whole of real space-time regularly.’ 
This is no doubt inconvenient for the mathematician, but I do not see that 

. the objection has any other consequences. ; 
The whole of de Sitter’s world can be reached by a process of continuation ; 

that is to say the finite experience of an observer A extends over a certain 
lune; he must then hand over the description to B whose experience is partly 
overlapping and partly new; and so on by overlapping lunes. The equation 
Guy =AGuy rests on the considerations of § 66. and simply by continuation of 
this equation from point to point we arrive at de Sitter’s complete world 
without encountering any barrier or mass-horizon, 

I have used the rather inaccurate phrase “experience of an observer” to 
indicate the lune between his partitions ¢=+0. But this part of the world 
is not causally detached from the rest, and events outside it are just as real 
as those inside it. Events before t=—0o may produce consequences in the 
neighbourhood of the observer and he might even see them happening through 
a powerful telescope. Only if he calculated from his observations when they 
must have happened he would find it impossible to assign to them any real 
value of ¢. A static space-time frame is a make-shift contrivance, and leads us 
to the admission of extra-temporal events as affecting even our own experience. 

I believe then that the mass-horizon is merely an illusion of the observer 
at the origin, and that it continually recedes as we move towards it. 

71. Properties of Hinstein’s cylindrical world. | 

Einstein does not regard the relation (69'5) 

Ma4rR=far7? veeecccccseseeeeeees (71:1) 
as merely referring to the limiting case when the amount of matter in the 
world happens to be sufficient to make the form cylindrical. He considers it 
to be a necessary relation between » and Jf; so that the constant occurring 
in the law of gravitation is a function of the total mass of matter in the world, 
and the volume of space is conditioned by the amount of matter contained 
in it. 

The question at once arises, By what mechanism can the value of 2 be 
adjusted to correspond with M{? The creation of a new:stellar system in a 
distant part of the world would have to propagate to us, not merely a gravi- 
tational field, but a modification of the law of gravitation itself. We cannot 
trace the propagation of any such influence, and the dependence of » upon 
distant masses looks like sheer action at a distance,
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But the suggestion is perhaps more plausible if we look at the inverse 
relation, viz. Af as a function of X. If we can imagine the gradual destruction 
of matter in the world (e.g. by coalescence of positive and negative electrons), 
we see by (71°1) that the radius of space gradually contracts; but it is not 
clear what is the fixed standard of length by which FR is supposed to be 
measured. The natural standard of length in a theoretical discussion is the 
radius Ff itself. Choosing it as unit, we have Af=47, whatever the number 
of elementary particles in the world. Thus with this unit the mass ofa particle 
must be inversely proportional to the number of particles. Now the gravi- 
tational mass is the radius of a sphere which has some intimate relation to 
the structure of the particle; and we must conclude that as the destruction 
of particles proceeds, this sphere must swell up as though some pressure were 
being relaxed. We might try to represent this pressure by the gravitational 
flux (§ 63) which proceeds from every particle; but I doubt whether that 
leads to a satisfactory solution. However that may be, the idea that the 
particles each endeavour to monopolise all space, and restrain one another by 
a. mutual pressure, seems to be the simplest interpretation of (71°1) if it is to 

be accepted. 
We do not know whether the actual (or electrical) radius of the particle 

would swell in the same proportion—by a rough guess I should anticipate 
that it would depend on the square root of the above ratio. “But this radius, 
on which the scale of ordinary material standards depends, has nothing’ to do 
with equation (71:1); and if we suppose that it remains constant, the argu- 

ment of § 66 need not be affected. 
In favour of Einstein’s hypothesis i is the fact that among the constants of 

nature there is one which is a very large pure number; this is typified by the 
ratio of the radius of an electron to its gravitational mass= 3.10". It is diffi- 
cult to account for the occurrence of a pure number (of order greatly different 
from unity) in the scheme of things; but this difficulty would be removed if 
we could connect it with the number of particles in the world—a number 
presumably decided by pure accident*. There is an attractiveness in the 
idea that the total number of the particles may play a part in determining 
the constants of the laws of nature; we can more readily admit that the laws 
of the actual world are specialised by the accidental circumstance of a par- 
ticular number of particles occurring in it, than that they are specialised by 
the same number occurring as a mysterious ratio in the fine-grained structure 

of the continuum. 
In Einstein’s world one direction is uncurved and this gives a kind of 

absolute time. Our critic who has been waiting ever since § 1 with his blank 
label “true time” will no doubt seize this opportunity of affixing it. More- 

* The square of 3.10% might well be of the same order as the total number of positive and 
negative electrons. The corresponding radius is 10% parsecs. But the result is considerably 

altered if we take the proton instead of the electron as the more fundamental structure.
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over absolute velocity is to some extent restored, for there is by hypothesis a 
frame of reference with respect to which material bodies on the average have 
only small velocities. Matter is essential to the existence of a space-time 
frame according to Einstein’s view; and it is inevitable that the space-time 
frame should become to some extent materialised, thereby losing some of the 
valuable elusiveness of a purely aetherial frame. It has been suggested that 
since the amount of mattér necessary for Einstein’s world greatly exceeds that 
known to astronomers, most of it is spread uniformly through space and is 
undetectable by its uniformity. This is dangerously like restoring a crudely 
material aether—regulated, however, by the strict injunction that it must on 
no account perform any useful function lest it upset the principle of relativity. 
We may leave aside this suggestion, which creates unnecessary difficulties. 
I think that the matter contemplated in Einstein’s theory is ordinary stellar 
matter. Owing to the irregularity of distribution of stars, the actual form of 
space is not at all a smooth sphere, and the formulae are only intended to give 
an approximation to the general shape. 

The Lorentz transformation continues to hold for a limited region. Since 
the advent of the general theory, it has been recognised that the special theory 
only applies to particular regions where the gy» can be treated as constants, so 
that it scarcely suffers by the fact that it cannot be applied to the whole 
domain of spherical space. Moreover the special principle is now brought into 
line with the general principle. The transformations of the theory of relativity 
relate to the differential equations of physics; and our tendency to choose 
simple illustrations in which these equations are integrable over the whole of 
space-time (as simplified in the mathematical example) is responsible for much 
misconception on this point. 

The remaining features of Einstein’s world require little comment. His 
spherical space is commonplace compared with de Sitter’s. Each observer's 
coordinate-system covers the whole world; so that the fields of their finite 
experience coincide. There is no scattering force to cause divergent motions. 
Light performs the finite journey round the world in a finite time. There is 
no passive “horizon,” and in particular no mass-horizon, real or fictitious. 
Einstein’s world offers no explanation of the red shift of the spectra of distant 
objects; and to the astronomer this must appear a drawback. For this and 
other reasons I should be inclined to discard Einstein’s view in favour of 
de Sitter’s, if it were not for the fact that the former appears to offer a distant 
hope of accounting for the occurrence of a very large pure number as one of 
the constants of nature. 

72,. The problem of the homogeneous sphere. 

For comparison with the results for naturally curved space, we consider a problem in which the curvature is due to the presence of ordinary matter. 
The problem of determining ds? at points within a sphere of fluid of uniform
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density has been treated by Schwarzschild, Nordstrém and de Donder. 
Schwarzschild’s solution * is 

ds? = — eXdr* — 7°d@ — r* sin? Od¢? + edt, 

where &=1(1 — ar) | setesaceeaeaees (72/1), e” =43(3 V(1—aa®)— (1 — ar) 
and « and a are constants. 

The formulae (46°9), which apply to this form of ds, become on raising one 
suffix 

— 8a Ty =e ("Jr — (A — Vr?) a 
— 847? =e (40-4 + fy? +h -V)/r) i (72/2) 

— 8773 = — 82T? 

~ 8rT =e (— Xr — (A= D/r) 
We find from (72'1) that . 

. . (A—1)fr?= hn fr; fv" — 4a’ + pot = her. 

Hence | Mp Dp a Tf = 2 AGN AV) csceesssonsee(T2BV), 

Té= etn] = 8a/87 esesessateseeese(72'B2). 

Referred to the coordinate-system (r, 0, @), 74 represents the density and 

T., 7,2, T3 the stress-system. Hence Schwarzschild’s solution gives uniform 

density and isotropic hydrostatic pressure at every point. . 

On further working out (72°31), we find that the pressure is 

pa mat EG=a)t $0 - aay} 
| DEY Br (g(1 — aa’) — (1 — ar) 

We see that the pressure vanishes at * = a, and would become negative if 

we attempted to continue the solution beyond r =a. .Hence the sphere r=a 

gives the boundary of the fluid. If it is desired to continue the solution out- 

side the sphere, another form of ds* must be taken corresponding to the 

equations for empty space. - Le . 

'” Unless a> /(8/9a) the pressure will everywhere be finite. This condition 

sets an upper limit to the possible size of a fluid sphere of given density. The 

limit exists because the presence of dense matter increases the curvature of 

space, and makes the total volume of space smaller. Clearly the volume of the 

material sphere cannot be larger than the volume of space. 

peseeseee (72-4). 

- * Schwarzschild’s solution is of considerable interest ; but I do not think that he solved exactly 

the problem which he intended to solve, viz. that of an incompressible fluid. For that reason I do 

not give the arguments which led to the solution, but content myself with discussing what dis- 

tribution of matter his solution represents. A full account is given by de Donder, La Gravifique 

Einsteinienne, p. 169 (Gauthier-Villars, 1921). The original gravitational equations are used, the 

natural curvature of space being considered negligible compared with that superposed by the 

material sphere.
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For spheres which are not unduly large (e.g. not much larger than the 
' stars) this solution corresponds approximately to the problem of the equi- 

librium of an incompressible fluid. The necessary conditions are satisfied, viz. 
(1) The density is uniform. 
(2) The pressure is zero at the surface. 
(3) The stress-system is an isotropic hydrostatic pressure, and therefore 

satisfies the conditions of a perfect fluid. 
(4) The pressure is nowhere infinite, negative, or imaginary. 

Further equation (72°4) determines the pressure at any distance from the’ 
centre. : a 

.The components of an energy-tensor are usually altered when a transfor- 
mation of coordinates is made, so that before interpreting them in terms of 
pressure and density it is necessary to ascertain that the appropriate co- ordinate-system has been used, viz. natural coordinates. To pass from the 
coordinates (r, 6, , t) to the natural coordinates at any point it is necessary 
to make a transformation of scale of rand ¢ at that point. This transforma- tion leaves the mixed tensor f;, unaltered, although it would alter T#” and Ly». Accordingly the results (72°31) and (72°32) are valid for natural measure, and the arbitrariness of. our original coordinate-system does not affect the definiteness of our conclusions. ; But in concluding that the solution represents a perfect fluid of uniform density, the density referred to is L$ or po. For reasons explained in § 54 this condition does not seem correct for an incompressible fluid. We need a solution in which 7 or p, is constant throughout the sphere; Schwarzschild has not solved this problem. For large spheres the central pressure is enor- mous and the difference of the two solutions may be considerable. 

I make this comment with some hesitation because it is difficult to be certain what limit an actual liquid would approach when the enormously increasing pressure is unable to bring the ultimate particles appreciably nearer together. In a gas the pressure is represented by molecular velocities and its nature is understood. Here it may be a Maxwellian electromagnetic stress, in which case the conclusion that Po 18 constant continues to hold true. But it may be some more mysterious quantum manifestation, as to which we can make no prediction. ; , If it is assumed that Schwarzschild’s result 
a< /(8/9a) 

is correct as regards order of magnitude, the radius of the greatest possible mass of water would be 370 million kilometres. The radius of the star Betel- geuse is something like half of this ; but its density is much too small to lead to any interesting applications of the foregoing result, , Admitting Einstein’s modification of the law of gravitation, with x de- pending on the total amount of matter in the world, the size of the greatest sphere is easily determined. By (69'4) R? = 1/47po, from which R (for water) is very nearly 300 million kilometres,



  

- OHAPTER VI 

ELECTRICITY 

73. The electromagnetic equations. 

In the classical theory the electromagnetic field is described by a scalar 
potential and a-vector potential (F, G, H). The electric force (X, Y, Z) 

and the magnetic force (a, 8, y) are derived from these according to the 

equations 

ya 2? _aF 

Wr 
(73/1) 

_ oH _ ag Cece coerce varasesssesscceee 

oy az) 

The classical theory does not consider any possible interaction between the 
gravitational and electromagnetic fields. Accordingly these definitions, to- 

gether with Maxwell’s equations, are intended to refer to the case in which no 

field of force is acting, ie. to Galilean coordinates. We take a special system 
of Galilean coordinates and set 

Ka (BP, G, Hy DB) vissscsseclessesesseees (73-21) 

for that system. Having decided to make x a contravariant vector we can 

find its components in any other system of coordinates, Galilean or otherwise, 

by the usual transformation law; but, of course, we cannot tell without investi- 

gation what.would be the physical interpretation of those components. In 

particular we must not assume without proof that the components of «# in 

another Galilean system would agree with the new F, G, H, ® determined 

experimentally for that system. At the present stage, we have defined «* in all 

systems of coordinates, but the equation (73°21) connecting it with experi- 

mental quantities is only known to hold for one particular Galilean system. - 

Lowering the suffix with Galilean g,,, we have - 

kp = (— Fy —G,— B®) ccstessesseeseens (73-22), 
Oky OK, yaa. 

Let the tensor Pryy = Ky — Kye = 3a, "ba, rorsosteenasee (73°38) 

as in (32'2). ‘ oO 

‘Then by (731)... 

Dg O(-G)_(-H)_ 
Fs= 55,30, 2 oy
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Accordingly the electric and magnetic forces together form the curl of the electromagnetic potential. The complete scheme for Fy, is 

Buv= 0 Hy Bo mB vivccccccsceseececes. (73-41), 
. [* Y ‘0 —a -Y 

—-B a 0 -Z 
” Xx FY Z 0 

Using Galilean values of g*” to raise the two suffixes, 
Fees 0 Hy BX vivcececsscseseceese, (73°42), 

Y 0 -—a VY 

—-B a4 0 Z 

—-X -Y -Z 0 
Let p be the density of electric charge and oz, cy, 0, the density of electric current. We set ; 

J" = (on, oy, o2, Pp) tte eeteteeeeeessesenees (735). Here again we must not assume that the components of J# will be recognised experimentally as electric charge and current-density except in the original system of coordinates, 
; The universally accepted laws of the electromagnetic field are those given by Maxwell. Maxwell’s equations are 

0Z--8Y---. da aX: a 08 aY OX —~4. 9 OF OX oy . oy dz Ot Oz Oa 2’ dx ~ Gy ~~ a *-(73°61), dy a8 ax da dy OY 4 aye Oe ae GE TOM Be 5 a tee aX ay og aes (73°62), 
Ba ty t Bg TP cteeseseeessessessennes (73°63), 

Qa OB Oy . 9. ant ay 3279 eT Se (73°64), 

The Heaviside-Lorentz unit of charge is used so that the factor 47 does not appear. The velocity of light is as usual taken to be unity. Specific inductive capacity and magnetic permeability are merely devices employed in obtaining macroscopic equations, and do not occur in the exact theory. It will be seen by reference to (7 3°41) and (73-42) that Maxvwell’s equations are equivalent to . , o ‘ 
OF.., OF ve OF ou —_— 

    

‘Oa, * On, Sa, =0 steceeeeeseeseseeee(7ET7L), 

aur | . Ry UE scsessseseesssseessesssscecs, (73°72), 
The first comprises the four equations (73°61) and (73°64); and the second comprises (73:62) and (73°63). ,
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On substituting Fy, = 0x,/0x, —0x,/dx, in (73°71) it will be seen that the 
equation is satisfied identically. Also (73°72) is the simplified form for Galilean 
coordinates of (#'#"),= J#, Hence Maxwell’s laws reduce to the simple form 

_ Oke On, . 
w= OT Be, seeeveeseees “aceceesseeee (73°78), 

BEY HTH ic ccecesenennvcenesesceconcseces (73°74), 

which are tensor equations. 

By (51°52) the second equation becomes oe 

7 OB" = 3 73°75 Bay TO teteteetestseseeeneeeesenens ( ye 

Owing to the antisymmetry of §*”, 0°§#"/0z,0x, vanishes, the terms in the 
summation cancelling in pairs. Hence 

  

— HO ieeeceeeeeteeeeteeees (73°76), 

whence, by (51°12), + (S#) yp =O veseeeeees Leceessnseedennanees (73°77). 

The divergence of the charge-and-current vector vanishes. i 

For our original coordinates (73°77) becomes 

Qcz , Ocy , Ooz , Op __ : 
Get ty toe tO co eeeeceneees (73°78). 

If the current is produced by the motion of the charge with velocity (u, v, w), 
we have oz, gy, z= pu, pv, pw, so that 

(pu) , (pv) , O(pw) , dp_ 
Ox + oy +32 + aE 0, 

which is the usual equation of continuity (cf. (53°71)), showing that electric 

charge is conserved. ; 

It may be noted that even in non-Galilean coordinates the charge-and- 

current vector satisfies the strict law of conservation 

ae 
Ot. 

This may be contrasted with the material energy and momentum which, it will 

be remembered, do not in the general case satisfy | 

On 
On, 
  0, 

so that it becomes necessary to supplement them by the pseudo-energy-tensor 

t% (§ 59) in order to maintain the formal law. Both T+” and J# have the 

property which in the relativity theory we recognise as the natural generali- 

sation of conservation, viz. T>” = 0, Ji = 0. 

If the charge is moving with velocity 

de dy ds 
dt’ dt’ .dt’
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co da dy dz we have Jt=pz, pot, Pa P 

ds(dz dy dz at. ; . =ea(a & &, Se) sssestesseeeeeeees (73°81). 
The bracket constitutes a ‘contravariant vector; consequently pds/dt is an 
invariant. Now ds/dt represents the FitzGerald contraction, so that a volume 
which would be measured as unity by an observer moving with the charge will be measured as ds/dé by an observer at rest in the coordinates chosen. 
The invariant pds/dt is the amount of charge in this volume, i.e. unit proper- 
volume. Ce lee cenaes 

ds We write eo Po= Pas 

so that p, is the proper-density of the charge. If A# is the velocity-vector dz,/ds of the charge, then (73°81) becomes 
Oo i TH = PAM. ccecesccscsscsscceesecoees (73:82). 

. Charge, unlike mass, is not altered by motion relative to the observer. This follows from the foregoing result that the amount of charge in an absolutely defined volume (unit proper-volume) is an invariant. The reason for this difference of behaviour of charge and mass will be understood by reference to (53-2) where the FitzGerald factor ds/dt occurs squared. 
For the observer S using our original system of Galilean coordinates, the quantities x,, F,, and J* represent the electromagnetic potential, force, and current, according to definition. For another observer S’ with different velocity, we have corresponding quantities x,’, F".», J, obtained by the transformation- laws; but we have not yet shown that these are the quantities which S’ will measure when he makes experimental determinations of potential, force, and current relative to his moving apparatus. Now if 8” recognises certain measured quantities as potential, force, and current it must be because they play the same part in the world relative to him, as ky, Fy, and J# play in the world relative to S. To play the same part means to have the same properties, or fulfil the same relations or equations. But x,’, F' 7», and J fulfil the same equations in Ss coordinates as Xu, Fy, and J# do in S’s coordinates, because the fundamental equations (73°73), (78°74) and (73°77) are tensor equations holding in all systems of coordinates. The fact that Maxwell’s equations are tensor equations, enables us to make the identification of x,, F..,J# with the experimental potential, force, and current in all systems of Galilean coordinates and not merely in the system initially chosen. 

In one sense our proof is not yet complete, There are other equations obeyed by the electromagnetic variables which have not yet been discussed. In particular there is the equation which prescribes the motion of a particle carrying a charge in the electromagnetic field. We shall show in § 76 that this also is of the tensor form, so that the accented variables continue to play the same part in S’’s experience which the unaccented variables play in S’s
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experience. But even as it stands our proof is sufficient to show that if there 

exists for S’ a potential, force, and current precisely analogous to the potential, 

force, and current of S, these must be expressed by Ky, F' ue, Ju, because other 

quantities would not satisfy the equations already obtained. The proviso must 

clearly be fulfilled unless the special principle of relativity is violated. 

When an observer uses non-Galilean coordinates, he will as usual treat 

them as though they were Galilean and attribute all discrepancies to the 

effects of the field of force which isintroduced. «,, F,,and J* will be identified 

with the potential, force, and current, just as though the coordinates were 

Galilean. These quantities will no longer accurately obey Maxwell’s original 

form of the equations, but will conform to our generalised tensor equations 

(73°73) and (73°74). The replacement of (73°72) by the more general form 

(73°74) extends the classical equations to the case in which a gravitational 

field of force is acting in addition to the electromagnetic field. 

74. Electromagnetic waves. 

(a) Propagation of electromagnetic potential. 

It is well known that the electromagnetic potentials F, G, H, P are not 

determinate. They are concerned in actual phenomena only through their 

curl—the electromagnetic force. The curl is unaltered, if we replace 

oV oV OV oV 
_F, —G, —H, ® by —-Fre, ~G+a -H+=z, Daz, 

where V is an arbitrary function of the coordinates. The latter expression 

gives the same field of electromagnetic force and may thus equally well be 

adopted for the electromagnetic potentials. 

It is usual to avoid this arbitrariness by selecting from the possible values 

the set which satisfies 
oF 0G 0H , oP 

| a. Beta tet Em 
Similarly in general coordinates we remove the arbitrariness of «, by imposing 

the condition ...... ; 
(KY) HO eeeccccceeeretnscnceceeeenans (74:1). 

. When the boundary-condition at infinity is added, the value of «, becomes 

completely determinate. 

_ By (73°74) and (73'3) 

J. = (FP )a = (gy? Fys)a= 9°" (Fius)a 

, ". 29° (Kuga — Kpua) -erereresceereestenerees (742) 

= 9"? (Kysa — KBan + Beau Ke) by (843) 

. = 98 (ky)aa— (Ka)ut Ge. 

The operator g*#(...)ga has been previously denoted by (J. Also, by (74:1) 

<=0. Hence , 

Che HIT um Gi ke csccesseeseenteceeneene (74°31).
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In empty space this becomes : 

Ce p=O ceeceeccecccsesecerssscesseees (74°32), showing that x, is propagated with the fundamental velocity. “If the law of gravitation G,,=Ag,, for curved space-time is adopted, the equation in empty space becomes 

(LD +A) ep =O ee eeeeesesesceceseeeececs (74°33). 
(6) Propagation of electromagnetic force. ; 
To determine a corresponding law of propagation of F,, we naturally try to take the curl of (74°31); but care is necessary since the order of the operations curl and [7 is not interchangeable, 
By (74-2) 

Juv = 98 (Kypav _ Kpuav) 

= gy? (Kyave —~ KBuva) ~gF (Bova Kep + Bava Kpe— Bava Ken Biva Kp.) 
by (348) 

=? (Kusy — Kpuva— f* (Bava Fa - Bova Feu) 
= 98 (Kuve — Xpyyv + Bipyke)a — Buvae Fe — Gr Fy. Hence 

‘Juv Ju = 978 CA ~ Kypp — Bin ke + By, v Ke — Busy Xela 
—(Byree — Biya) 2 — GeFut GiB, But by the cyclic relation (34°6) 

Boy + Burp + Bip = 0. Also by the antisymmetric Properties 
: (Buvae - Byyae) Fos 2Buvae ea, Hence the result reduces to 

Juv - Ju = (Kuy ~ Kyu)ga - GP uy + GLP, - 2Buvae F', : so that Fue = Sv — Jig — GPa t+ GP 2Buvael™ voces. (74°41). In empty space this becomes i 
CD Far = Burak eeccccscccesseeseces.. (74-42 for an infinite world. ‘For-a curved world undisturbed by attracting matter . - 

> 
in which Gi, =2gi, Bure =X (GurJae— Jus Jre), the result is 

vention x? = Q, 
But the result (74°42) is, I think, unexpected. It shows that the equations of propagation. of electromagnetic force involve the Riemann-Christoffel tensor ; and therefore this is not one of the phenomena for which the ordinary Galilean equations can be immediately generalised by the principle of equivalence,
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This naturally makes us uneasy as to whether we have done right in adopting 

the invariant equations of propagation of light (ds = 0, 8 fds = 0) as true in 

all circumstances; but the investigation which follows is reassuring. 

' (c) Propagation of a wave-front. 

The conception of a “ray” of light in physical optics is by no means 

elementary. Unless the wave-front is of infinite extent, the ray is an abstrac- 

tion, and to appreciate its meaning a full discussion of the phenomena of 

interference fringes is necessary. We do not wish to enter on such a general 

discussion here; and accordingly we shall not attempt to obtain the formulae 

for the tracks of rays of light for the case of general coordinates ab initio. 

Our course will be to reduce the general formulae to such a form, that the 

subsequent work will follow the ordinary treatment given in works on physical 

optics. . 

The fundamental equation treated in the usual theory of electromagnetic 

waves is , , 
oe a fF oY\ - AE 
(ja-as ape) t.=O90 rereeereseas eoees (74°51), 

which is the form taken by ()«, = 0 in Galilean coordinates. When the region 

of space-time is not flat we cannot immediately simplify C]x, in this way; 

but we can make a considerable simplification by adopting natural coordinates 

at the point considered. In that case the 3-index symbols (but not their 

derivatives) vanish, and . oo 

Di kp = 9°? (Hn )as . 
OKp 0 . 

=o (Ses, ae, W484): 
Hence the law of propagation (1x, = 0 becomes in natural coordinates 

(<-5-5-S) = g? © {uB, ex (74:52) ae Gat Bye ap) Ke = 9" 5 eM o Ke ssevececs . 

At first sight this does not look very promising for a justification of the 

principle of equivalence. We cannot make all the derivatives 0 {u, €}/02% 

yanish by any choice of coordinates, since these determine the Riemann- 

Christoffel tensor. It looks as though the law of propagation in curved space- 

time involves the Riemann-Christoffel tensor, and consequently differs from 

the law in flat space-time. But the inner multiplication by g* saves the 

situation. It is possible to choose coordinates such that 9° 0 {u8, e}/dz_ vanishes 

for all the sixteen possible combinations of '~ and e*. For these coordinates 

(74°52) reduces to (74°51), and the usual solution for flat’ space-time will 

apply at the point considered. 

* According to (36:55) it is possible by a transformation to increase @ {HB, e}/@x, by an 

arbitrary quantity as, fa? symmetrical in x, Banda. The sixteen quantities g# a, pa (#, e=1, 2, 3, 4) 

will not hare to fulfil any conditions of symmetry, and may be chosen independently of one another. 

Hence we can make the right-hand side of (74°52) vanish by an appropriate transformation. 

E . 12
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A solution of (74°51), giving plane waves, is 

Qart 
ky,= A, exp x (le + my +72 — Ct) ie coeseeee (74°58). 

Here A, is a constant vector; J, m,n are direction cosines so that I? +. m?+7n?=1. 
Substituting in (74°51) we find that it will be satisfied if, c?=1 and the first 
and second derivatives of J, m, n,c vanish. According to the usual discussion 
of this equation (J, m, m) is the direction of the ray and ¢ the velocity of 
propagation along the ray. 

The vanishing of first and second derivatives of (J, m, n) shows that the 
direction of the ray is stationary at the point considered. (The light-oscilla- 
tions correspond to F,, (not «,) and the direction of the ray would not 
necessarily agree with (J, m, n) if the first derivatives did not vanish; conse- 
quently the stationary property depends on the vanishing of second derivatives 
as well.) Further the velocity ¢ along the ray is unity. 

It follows that in any kind of space-time the ray is a geodesic, and the 
velocity is such as to satisfy the equation ds=0. Stated in this form, the 
result deduced for a very special system of coordinates must hold for all 
coordinate-systems since it is expressed invariantly. The expression for the 
potential (74°58) is, of course, only valid for the special coordinate-system. 

We have thus arrived at a justification of the law for the track of a light- 
pulse (§ 47 (4)) which has been adopted in our previous work. 

(d) Solution of the equation Txt = Je, 
We assume that space-time is flat to the order of approximation required, 

and accordingly adopt Galilean coordinates. The equation becomes 

= — Vt = Jit, | 

of which the solution (well known in the theory of sound) is 

{eho ye = I I | T}en cere a BE oosssse (74°61), 
where r is the distance between (a, y, z) and (&, 7, ©). 

The contributions to «* of each element of charge or current are simply 
additive; accordingly we shall consider a single element of charge de moving 
with velocity A*, and determine the part of x# corresponding toit. By (73°81) 
the equation becomes 

1d dédnd | wae Fae |f[[p Sane essesessesteases (7462), 
where all quantities on the right are taken for the time t—r. - 

For an infinitesimal element we may take p constant and insert limits of 
integration ; but these limits must be taken for the time ¢—7, and this intro- 
duces an important factor representing a kind of Doppler effect. If the element 
of charge is bounded by two planes perpendicular to the direction of r, the 
limits of integration are from the front plane at time ¢—r to the rear plane 
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at time t-r—dr. If v, is the component velocity in the direction of 7, the 
front plane has had time to advance a distance v,dr. Consequently the 
instantaneous thickness of the element of charge is less than the distance 
between the limits of integration in the ratio 1—v,; and the integration is 
over a volume (1—1,)7? times the instantaneous volume of the element of 

charge. Hence . 

Writing as usual 8 for the FitzGerald factor dé/ds, (74°62) becomes 

en aah. = eo secsesee: (74°71). 
In most applications the motion of the charge can be regarded as uniform 

during the time of propagation of the potential through the distance r. In 

that case 
. {r (1 = %)fe-r = {r}e, 

the present distance being less than the antedated distance by v,r. The result 

then becomes 
_ fAtde de (u, v, w, 1) : 

KAS {erg tar als (jen) tar I soeseeseesceees (74°72). 

It will be seen that the scalar potential ® of a charge is unaltered by 

uniform motion, and must be reckoned for the present position of the charge, 

not from the antedated position. 
The equation (74°71) can be written in the pseudo-tensor form 

_—_ { Atde \ 
47 A” R,) ReRa=0 

where Ps is the pseudo-vector representing the displacement from the charge 

(E, n, ¢ 7) to the point (2, Wn 4, t) where «* is reckoned. The condition 

          

R*R.=0 gives 
—(x@— EP -(y— nf -@— SP +t TP = 0, 

so that r=t—7r , 

Also APR, =—Bu(e—£)—o(y—7)— Bu (e- 948-7) 
; =— Bu,r+ Br 

= 7B (1 — 2). 

A finite displacement Re is not a'vector in the general theory. We call it 
a pseudo-vector because it behaves as a vector for Galilean coordinates and 

Lorentz transformations. Thus the equation (74'8) does not admit of applica- 
tion to coordinates other than Galilean. 

75, The Lorentz transformation of electromagnetic force. 

The Lorentz transformation for an observer S’ moving relatively to S with 
a velocity u ee the a-axis is 

=9(%— Ux), =, By =H, 2 = q(t UM) ...(751),: 

where . g=(l—w)7 4, 
12—2
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We use g instead of 8 in order to avoid confusion with the component 8 of 
magnetic force. ©: oe 

We have © Lo ; 
Ox, Oa Oa’ ay. City’ _ ay’ _ 5 Qa, Oa, 2 Bay On > Bay: Oar veeees 

and all other derivatives vanish. 
To calculate the electromagnetic force for'S’ in terms of the force for 8, 

we apply the general formulae of transformation (23°21). Thus 

On,’ Ox,/ aa 

Qi Bag 
— aan,’ On, 0x,’ Ox, 3 

Ge, a, Be, Be 
=qy-—quy. : . bo os 

Working out the other components similarly, the result is 
A= X, P’=q(V—w), 2’ =q(Z+ug)) .. 
da =a f =q(B+uZ), xy =q(y—-uY)f ° 

which are the formulae given by Lorentz, * * . 
The more general formulae when the velocity of the observer S’ is (u, v, w) 

become very complicated. .We shall only consider the approximate results 
when the square of the velocity is neglected. In that case.g=1, and the 
formulae (75°3) can be completed by symmetry, viz. , os coe 

me La X-wB + vy) ot 
a =a +wY¥ —vZ} 

y’ =_ pa = 

4 

76. Mechanical effects of the electromagnetic field. oe Te 
According to the elementary ‘laws, 4 piece of matter carrying electric 

charge of density p experiences in an electrostatic field a mechanical force 
7 BRS p¥, pf : . per unit volume. Moving charges constituting electric currents of amount 

(cz, cy, oz) per unit volume are acted on b ‘a magnetic field; so that-a: 
mechanical force et 

: ¥ey— Boz, az—Y¥ox, Boz — acy - 
per unit volume is experienced. ~ 

Hence if (P, Q, R) is the total mechanical force per unit volume 
Oot te Bee | 

Q = pl tac, yo | cecsccsesscsesscceees (76°1). 
R=pZ +Box—ac, | 

‘The rate at which the mechanical force does work is 
S=o,X+ TyY + 0,2. 

The magnetic part of. the force does no work since it acts at right angles to the current of charged particles..
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By (73°41) and (73:5) we find that these expressions are equivalent to 

(P, Q, BR, - 8) = Fd”. : . oo lo 

We denote the vector F,,J” by h,. Raising the suffix with Galilean Juv, We 

have. oo i 

(P, Q, B, S) = — hit = — FHT” vo cceeesee ee eeee (762), 

The mechanical force will change the momentum and energy of the 

material system; consequently the material energy-tensor taken alone will 

no longer be conserved. . In order to preserve the law of conservation of 

momentum and energy, we must recognise that the electric field contains an 

electromagnetic momentum and energy whose changes are equal and opposite 

to those of the material system*. The whole energy-tensor will then consist 

of two parts, Mj, due to the matter and Z¥ due to the electromagnetic field. 

We keep the notation 7%, for the whole energy-tensor—the thing which 

is always conserved, and is therefore to be identified with Gi — 39,.G. Thus 

TM MAB, ceseeslcesecsteeseetenee (763). 

Since P, Q, 2, S measure the rate of increase of momentum and energy 

of the material system, they may be equated to olf#"/dx, as in (53°82). Thus ° 

aarur oe 
Oxy 
  =— ht 

The equal and opposite change of the momentum and energy of the electro- 

magnetic field is accordingly given by 

one _ + he, 

Ox, 
  

These equations apply to Galilean or to natural coordinates. We pass over to 

general coordinates by substituting covariant derivatives, so as to obtain the 

tensor equations - 
DMP a Wt BYP aseeecccseeseeseenee (TOS), 

which are independent of the coordinates-used. This satisfies 

Te? == (Aler + Ee), = 0. 

_Consider a charge moving with velocity (u, v, w). We have by (75°4) | 

~ pX’ = pX — (pw) B+ (pr) y _ - 
=pX—a;B+oyy | 
oP oS 

* Notwithstanding the warning conveyed by the fate of potential energy (§ 59) we are again 

running into danger by generalising energy so 4s to conform to an assigned law. I am not sure 

that the danger is negligible. But we are on stronger ground now, because we know that there is a 

world-tensor which satisfies the assigned law T?”=0; whereas the potential energy was introduced 

to satisfy oer /éxz,=0, and it was only a speculative possibility (now found to be untenable) that 

there existed a tensor with that property. ‘ :
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The square of the velocity has been neglected, and to this order of approxima- tion p’=p. Thus to the first order in the velocities, the mechanical force on @ moving charge is (p'X’, p'Y’, p’Z’); just as the mechanical force on a charge at rest is (pX, pY, pZ). We obtain the force on the moving charge either by applying the formula (76'1) in the original coordinates, or by transforming to new coordinates in which the charge is at rest so that Cx, Ty, 0z=0. The equivalence of the two calculations is in accordance with the principle of relativity for uniform motion. , 
If the square of the velocity is not neglected, no such simple relation exists. The mechanical force (mass x acceleration) will not be exactly the same in the accented and unaccented systems of coordinates, since the mass and acceleration are altered by terms involving the square of the velocity. In fact we could not expect any accurate relation between the mechanical force (P, Q, R) and the electric force (X, Y, Z)in different systems of coordinates; the former is part of a vector, and the latter part of a tensor of the second rank. Perhaps it might have been expected that with the advent of the electron theory of matter it would become unnecessary to retain a separate material energy-tensor M+’, and that the whole energy and momentum could be includéd in the energy-tensor of the electromagnetic field. But we cannot dispense with M#, The fact is that an electron must not be regarded as a purely electromagnetic phenomenon; that is to say, something enters into its constitution which is not comprised in Maxwell’s theory of the electromagnetic field. In order to prevent the electronic charge from dispersing under its own repulsion, non-Maxwellian “ binding forces” are necessary, and it is the energy, stress and momentum of these binding forces which constitute the material energy-tensor +», , 

77. The electromagnetic energy-tensor. 
To determine explicitly the value of &,, we have to rely on the relation found in the preceding section 

Fy = ly = Fy J? = Py PY oe cccccccsceccs.. (771). ' The solution of this differential equation is . 
Li =~ PO Kt Ge FO Kg coecceccccccecces. (77-2). To verify this we take the divergence, remembering that covariant dif- ferentiation obeys the usual distributive law and that 9g’ is a constant. 

Bay =— FYE pa BP ay t hg (FP Fag + FOR og,) 
STEFF Py t tg. FFs, by (26) 
=F Fea 4 FPF ap ~ LP OF gg EF OF soy by changes of dummy suffixes, 

= PPE pat EF (Fea + Faua+ Fase) 
by the antisymmetry of Fav, ,
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It is easily verified that 

Fyuas + Popa t Pope = OF en 1 OFes 
OF wa 
Dap * On, t On, ~° 

by (30°8) and (73°71); the terms containing the 3-index symbols mutually 

cancel. 
Hence Ey = PYF aa J * Pia, 

agrecing with (77-1). — 
It is of interest to work out the components of the energy-tensor (77°2) 

in Galilean coordinates by (73°41) and (73°42). We have 

  

FF ig =2 (a+ B+ y?—X2— VY?- 2?) ceesseeerees (77°3), 

Bla} (2— Bf) + F(X V2 D9) cere ITAD, 

BX OBA XY cccseccsserseeseeseseeeeeeens seseeee (77-42), 

BES a BZ Yves erece reenter etesen tes eenentties ...(77-48), 

EXa4 (P+ ty )tR (Rt V24 2%) cereerrees (77°44). 

The last gives the energy or mass of the electromagnetic field; the third 

expression gives the momentum; the first two give the stresses in the field. 

In all cases these formulae agree with those of the classical theory. 

Momentum, being rate of flow of mass, is also the rate of flow of energy. 

In the latter aspect it is often called Poynting’s vector. It is seen from (77°43) 

that the momentum is the vector-product of the electric and magnetic forces 

—to use the terminology of the elementary vector theory. 

From E¥, we can form a scalar 2 by contraction, just as 7 is formed from 

T*,. The invariant density T will be made up of the two parts # and WM, the 

former arising from the electromagnetic field and the latter from the matter 

or non-Maxwellian stresses involved in the electron. It turns out, however, 

that E is identically zero, so that the electromagnetic field contributes nothing 

to the invariant density. The invariant density must be attributed entirely 

to the non-Maxwellian binding stresses. Contracting (772) 

, Ga — Fe Pa + th Ph Fag = 0 wecceeesseeseeees (775), 

since git = 4. , 

The question of the origin of the inertia of matter presents a very curious 

paradox. We have to distinguish— 

the invariant mass m arising from the invariant density 7, and 

the relative mass M arising from the coordinate density 7™. 

As we have seen, the former cannot be attributed to the electromagnetic field. 

But it is generally believed that the latter—which is the ordinary mass as 

understood in physics—arises solely from the électromagnetic fields of the 

electrons, the inertia of matter being simply the energy of the electromagnetic 

fields contained in it. It is probable that this view, which arose in consequence 

of J. J. Thomson's researches*, is correct; so that ordinary or relative mass 

* Phil. Mag. vol. 11 (1881), p. 229.
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may be regarded as entirely electromagnetic, whilst invariant mass is entirely 
non-electromagnetic. . 

How then does it happen that for an electron at rest, invariant mass and 
relative mass are equal, and indeed synonymous ? 

Probably the distinction of Maxwellian and non-Maxwellian stresses as tensors of different natures is artificial—like the distinction of gravitational 
and inertial fields—and the real remedy is to remodel the electromagnetic 
equations so as to comprehend both in an indissoluble connection. But so 
long as we are ignorant of the laws obeyed by the non-Maxwellian stresses, it is scarcely possible to avoid making the separation. From the present point 
of view we have to explain the paradox as follows— 

Taking an electron at rest, the relative mass is determined solely by the component £*; but the stress-components of 2+” make a contribution to £ which exactly cancels that of H*, so that E=0. These Stresses are balanced by non-Maxwellian stresses M4, ... 11; the balancing being not necessarily exact in each element of volume, but exact for the region round the electron taken as a whole. Thus the term which cancels #* is itself cancelled, and ## becomes reinstated. The final result is that the integral of T is equal to the integral of E for the electron at rest, 
It is usually assumed that the non-Maxwellian stresses are confined to the interior, or the close proximity, of the electrons, and do not wander about in the detached way that the Maxwellian stresses do, eg. in light-waves. I shall adopt this view in order not to deviate too widely from other writers, although I do not see any particular reason for believing it to be true*. 
If then all non-Maxwellian stresses are closely bound to the electrons, it follows that in regions containing no matter Z” is the entire energy-tensor. Then (54°83) becomes. . 

Gn — SRG = — BIB ccc eecccececeees (77°6) 
Contracting, - , G=8rE =0, 
and the equation simplifies to 

~ Gu, = — 87 E,, seevceessscrecsesseedoness (777) 
for regions containing electromagnetic fields but no matter. We may notice that the Gaussian curvature of Space-time is zero even when electromagnetic energy is present provided there are no electrons in the region. Since for electromagnetic energy the invariant mass, m, is zero, and the relative mass, J, is finite, the equation (12:3) 

M = mdt/ds 
shows that ds/dt is zero. Accordingly free electromagnetic energy must always have the velocity of light. ae 

* We may evade the difficulty by extending the definition of electrons or matter to include all regions where Maxwell's equations are inadequate (e.g. regions containing quanta).
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78. The gravitational field of an electron. 

This problem differs from that of the gravitational field of a particle (§ 38) 

in that the electric field spreads through all space, and consequently the: 

energy-tensor is not confined to a point or small sphere at the origin. 

For the most general symmetrical field we take as before 

JuHaH—-e@, ga=—P, Js=—7P sin? 0, gu=@" veers (78/1). 

Since the electric field is static, we shall have 

FG, H=k,, ka, t3=9, 

and «, will be a function of r only. Hence. the only surviving components of 

Fy, are 
Bape — Fygated ccscsesscesseseseseeneneees (78:2), 

the accent denoting differentiation with respect to r. Then 

fas g* Fa = — e7 (ty) Ki, 

and Fi = Fu V—9 = — eh At) 97 sin O. KY. 

Hence by (73°75) the condition for no electric charge and current (except at 

the singularity at the origin) is . 

oy" . a 
7 = = (e~BOTY*) rtd) =O ciseeveccecere (783), am, sin 0 5. (¢ re) 0 : (78°3), 

1 © gh (ty) 
so that Ki = Ge 

where ¢ is a constant of integration. 

Substituting in (77°2) we find 

El=-£; =— EX = Eha gern? : 

. Le . 

5 = vevees veneeesteeeeees (78°5). 

By (77°7) we have to substitute —8Zy» for zero on the right-hand side of 

(38°61-38'64). The first and fourth equations give as before ’ = — py’; and the 

second equation now becomes ; 

e(l+r’)-l=- Sir Jn E> 

ms =— 47ré/r. 

Hence writing e’=¥, yb ty’ = 1 — 4rre’/r’, 

so that ry =r + 4re/r — 2m, 

where 2m is a constant of integration. - 

Hence the gravitational field due to an electron is given by” 

dst — oy tdr? — 17d — 7? sin? Odg? + yb’, 

with q=l- om , Se sesesseatesseeessesesee(78°6)- 

~ This result appears to have been: first given by Nordstrim. I have here 

followed the solution as given by G. B. J effery*. 

* Proc. Roy: Soc. vol. 99a, p. 123. ,
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The effect of the term dire’/r* is that the effective mass decreases as r decreases, This is what we should naturally expect because the mass or energy is spread throughout space. We cannot put the constant m equal to zero, because that would leave a repulsive force on an uncharged particle varying as the inverse cube of the distance; by (55:8) the approximate Newtonian potential is m/r — Qare?/r°, 

The constant m can be identified with the mass and 4yre with the electric charge of the particle. The known experimental values for the negative electron are 

m= 7.10-* om., 

2are? 
=15.10-% em, 

m 
  a= 

The quantity a is usually considered to be of the order of magnitude of the radius of the electron, so that at all points outside the electron m/r is of order 10-® or smaller. Since 1+ y= 0, (78:4) becomes 

Fa = Ki = = ’ 

which justifies our identification of 4are with the electric charge. 
This example shows how very slight is the gravitational effect of the electronic energy.- We can discuss most electromagnetic problems without taking account of the non-Euclidean character which an electromagnetic field necessarily imparts to space-time, the deviations from Euclidean geometry being usually so small as to be negligible in the cases we have to consider, When r is diminished the value of given by (78'6) decreases toa minimum for r = 2a, and then increases continually becoming infinite at r=0. There is no singularity in the electromagnetic and gravitational fields except at r=0, It is thus possible to have an electron which is strictly a point-singularity, but nevertheless has a finite mass and charge. 
The solution for the gravitational field of an uncharged particle is quite different in this respect. There is a singularity at r= 2m, so that the particle must have a finite perimeter not less than 4arm. Moreover this singularity is caused by y vanishing, whereas for the point-electron the singularity is due to becoming infinite. 
This demonstration that a point-electron may have exactly the properties which electrons are observed to have is a useful corrective to the general belief that the radius of an electron is known with certainty. But on the whole, I think that it is more likely that an electron is a structure of finite size; our solution will then only be valid until we enter the substance of the electron, so that the question of a singularity at the origin does not arise, Assuming that we do not encounter the substance of. the electron outside the sphere r=aq, the total energy of the electromagnetic field beyond this radius would be equal to the mass of the electron determined by observation.
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For this reason a is usually taken as the radius of the electron. If it is 
admitted that the electromagnetic field continues undisturbed within this 
limit, an excess of energy accumulates, and it is therefore necessary to suppose 
that there exists negative energy in the inner portion, or that the effect of 

the singularity is equivalent toa negative energy. The conception of negative 

energy is not very welcome according to the usual outlook. 

Another reason for believing that the charge of an electron is distributed 

through a volume of radius roughly equal to a will be found in the investiga- 

tion of § 80. Accordingly I am of opinion that the point-electron is no more 

-than a mathematical curiosity, and that the solution (78°6) should be limited 

to values of r greater than a. . 

79. Electromagnetic action. 

The invariant integral 

A=} | FerPy VOGdt sussessesesesesee (79°1) 

is called the action of the electromagnetic field. In Galilean coordinates it 

becomes by (77°3) , " . 

| dt | I | (e+ Bit yt— X2— ¥2—Z?) dry seseasens (79:2). 

Regarding the magnetic energy as kinetic (7) and the electric energy as 

potential (V) this is of the form 

| (T~V) dt, 

i.e. the time-integral of the Lagrangian function*. The derivation of the 

electromagnetic equations by the stationary variation of this integral has been 

investigated in the classical researches of Larmory. « 

We shall now show that the two most important electromagnetic tensors, 

viz. the energy-tensor Z#” and the charge-and-current vector J#, are the 

Hamiltonian derivatives of the action, the formulae being 

. h 
  Tye (ZFH" Buy) = EBM sesecccccsceeeesceees (79°31), 

h 1 Fer) =— J (79°32) ite, (4 nv) = seseeeeeeeeeseeeeenes 2). 

* In dynamics there are two integrals which have the stationary property under proper restric- 

tions, viz. {Tdt and f(T—V) de. The first of these is the action as originally defined. In the 

general theory the term has been applied to both integrals somewhat indiscriminately, since there 

is no clear indication of energy which must be reckoned as potential. : 

¢ Aether and Matter, Chapter vi.
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' First consider small variations 89u», the Ky remaining constant. The F,, 
(but not the J+») will accordingly remain unvaried. We have then 

8 (Per Fy V = 9) = Fe Py, 8 (V9) + Fos Fu V —g-8(g"*g"®) 

- = POP AH G.5 4 Pag Bae HG (ge bg? + gg) 
=V— Gg {-4 FF, 9,389"? + LP up Puy g*5g??}. 
=2V— 9.89 [-19,, FF, + Fey Fy} 
=-2E,,V—q. d9°8 by (77-2) 

= 2880 — 9.895 by (852). 
From this (79°31) follows immediately, 

Next consider variations Sku, the gus remaining constant. We have 
5 (Fuh, V9) = 2Fe V9. oF, 

vay (28k) _ (Be) os eG (Se) 
=4 fav V—g . 2Crn) 

owing to the antisymmetry of F#» . . Lee 9 __ 3 

ao agg Pe N= 9) Beg + dsm (Fe VG. Bey), 
The second term can be omitted since it is a complete differential, and yields a surface-integral over the boundary where the variations haye to vanish. Hence 

Oo ro. — | 8 | Pek N= Gar=— af 2 (Pe V9). Bede 

=-4 | Jt 3e,.0— gdr 
by (73°75). This demonstrates (79°32), 

In a region free from electrons 

Ley — Hur = 0, 
Hence by (60:43) and (79°31) 

tas (G— 4a Fe FRO ec ccccsescsesees (79°4), 

that when electromagnetic fields are included, the quantity which is stationary is G~—4q7-FeF,,, Moreover it is stationary for variations oxy as well as Ours since when there are no electrons present J# must be zero, The quantity G—4rFeF., thus appears to be highly significant from the
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physical point of view, in the discrimination between matter (electrons) and 

electromagnetic fields. But this significance fails to appear in the analytical 

expression. Analytically the combination of the two invariants G and Fe"F,, 

—the one a spur, and the other a square of a length—appears to be quite 

nonsensical. We can only regard the present form of the expression as a 

stepping-stone to something simpler. It will appear later that G—4rFeF,, 

is perhaps not the exact expression for the significant physical quantity; it 

may be-an approximation to a form which is analytically simpler, in which . 

the gravitational and electromagnetic variables appear in a more intelligible 

combination. . 

Whereas material and gravitational actions are two aspects of the same 

thing, electromagnetic action stands entirely apart. There is no gravitational 

action associated with an electromagnetic field, owing'to the identity E=0. 

Thus any material or gravitational action is additional to electromagnetic 

action—if “addition” is appropriate in connection with quantities which are 

apparently of dissimilar nature. 

80. Explanation of the mechanical force. 

Why does a charged particle move when it is placed in an electromagnetic 

field? We may be tempted to reply that the reason is obvious; there is an 

electric force. lying in wait, and it ig the nature of a force to make bodies 

move. But this is a confusion of terminology; electric force is not a force in 

the mechanical sense of the term; it has nothing to do with pushing and 

pulling. Electric force describes a world-condition essentially different from 

that described by a mechanical force or stress-system ; and the discussion in 

§ 76 was based on empirical laws without theoretical explanation. 

If we wish for a representation of the state of the aether in terms of 

mechanical forces, we must employ the’ stress-system (77-41, 77-42). In fact. 

the pulling and pushing property is described by the tensor E,, not by Fy, 

Our problem is to explain why a somewhat arbitrary combination of the 

electromagnetic variables Fy, should have the properties of a mechanical 

stress-system. Co 

To reduce the problem to its simplest form we consider an isolated electron. 

In an electromagnetic field its world-line does not follow a geodesic, but 

deviates according to laws which have been determined experimentally. It is 

worth noticing that the behaviour of an isolated electron has been directly 

determined by experiment, this being one of the few cases in which micro- 

scopic laws have been found immediately and not inferred hypothetically from 

macroscopic experiments. We want to know what the electron is trying to 

accomplish by deviating from the geodesic—what condition of existence is 

fulfilled, which makes the four-dimensional structure of an accelerated electron 

a possible one, whereas a similar structure ranged along a geodesic track would 

be an impossible one. ,
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The law which has to be explained is* 
Bx, dz, dx . . . —m ‘e + {a8, 2} Ws a Sha PAT” ees (80°1), 

which is the tensor equation corresponding to the law of elementary electro- statics 2 
an 

m de = Xe. 

Let A# be the velocity-vector of the electron (A = dz,/ds), and Po the proper-density of the charge, then by (73°82) 

5 (80-21), 
and Wap + {a8 } da, dap = A» (A*) (80°22) as? >t as as ; oer accccesvecs ae), 

as in (33°4). 
, Considering the verification of (80-1) by experiment we remark that Y or ',, refers to the applied external field, no attention being paid to the possible disturbance of this field caused by the accelerated electron itself, To distin- guish this we denote the external field by F’y». The equation to be explained accordingly becomes 

mA” (A*), = — Fe, (pA), 
or, lowering the suffix bs 

MAYA wy = —FuyeA” occccccccsececeeeces. (80°3). We have replaced the density p, by the quantity e for the reason explained in the footnote. 
Consider now the field due to the electron itself in its own neighbourhood. This is determined by (74°41) 

OF = Suv — Sig — GLP ay + Go Pau + 2Burae F. 
The discussion of § 78 shows that we may safely neglect the gravitational field caused by the energy of the electron or of the external field. Hence approximately 

OF,» =Jiy - Tine The solution is as in (74:72) 
_ de (Ay, 7 Ay) 

Fur ~ 4aBr 
1 d = Tipp (Ae — Aon) [SE ccreeeessssseeee (80'4), 

* In this and a succeeding equation I have a quantity on the left-hand side and a density on the right-hand side. I trust to the reader to amend this mentally. It would, I think, only make the equations more confusing if I attempted to indicate the amendment symbolically,
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Now suppose that the electron moves in such a way that its own field 
on the average just neutralises the applied external field F’,, in the region 
occupied by the electron. The value of F,, averaged for all the elements of 
charge constituting the electron is given by 

1 ePuo = 7 (Ape ~ Av) " 

= 4a 2 (Aw Ann) = 

where I/a is an average value a 1/ri. for every pair of points in the electron. 

We may leave indeterminate the exact weighting of the pairs of points in 

taking the average, merely noting that a will be a length comparable with 
the radius of the sphere throughout which the charge (or the greater part of . 

it) is spread, 
If this value of F,, is equal and opposite to F’,,, we have 

  

de, de, 

Ty 

, 1 e 
—eA'’F',, = an — A” (Ay — Av) a 

ae 
=AvAy,. Teg vue (80°5), 

because A "Ay =A, (A) = 3 (A,A"), =F (1), = 9, 

the square of the length of a velocity-vector being necessarily unity. 

The result (80°5) will agree with (80°3) if the mass of the electron is 

e . 

~ aaa 

The observed law of motion of the electron thus corresponds to the condi- 

tion that it can be under no resultant electromagnetic field. We must not 

imagine that a resultant electromagnetic force has anything of a tugging 

nature that can deflect an electron. It never gets the chance of doing anything 

to the electron, because if the resultant field existed the electron could not 

exist—it would be an impossible structure. 
The interest of this discussion is that it has led us to one of the conditions 

for the existence of an electron, which turns out to be of a simple character— 

viz. that on the average the electromagnetic force throughout the electron 

must be zero*. This condition is clearly fulfilled for a symmetrical electron 

at rest in no field of force; and the same condition applied generally leads to 

the law of motion (80°1). , 

For the existence of an electron, non-Maxwellian stresses are necessary, 

and we are not yet in a position to state the laws of these additional stresses. 

The existence of an electron contradicts the electromagnetic laws with which 

we have to work at present, so that from the present standpoint an electron 

at rest in no external field of force is a miracle. Our calculation shows that an 

* The exact region of zero force is not determined, The essential point is that on some critical 
surface or volume the field has to be symmetrical enough to give no resultant.
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electron in an external field of force having the acceleration given by (801) is 
precisely the same miracle. That is as far as the explanation goes. , 

. The electromagnetic field within the electron will vanish on the average 
if it has sufficient symmetry. There appears to be an analogy between this 
and the condition which we found in § 56 to be necessary for the existence of 
a particle, viz. that its gravitational field should have symmetrical properties. ° 
There is further an analogy in the condition determining the acceleration in 
the two cases, An uncharged undisturbed body takes such a course that . 
relative to it there is no resultant gravitational field; similarly an electron 
takes such a course that relative to it there is no resultant electromagnetic 
field. We have given a definite reason for the gravitational symmetry of a 
particle, viz. because in practical measurement it is itself the standard of 
symmetry; I presume that there is an analogous explanation of the electrical 
symmetry of an electron, but it has not yet been formulated. The following 
argument (which should be compared with §§ 64, 66) will show where the 
difficulty occurs. . . 

The analogue of the interval is the flux F,,dS#". As the interval between 
two adjacent points is the fundamental invariant of mechanics, so the flux 
through a small surface is the fundamental invariant of electromagnetism. 
Two electrical systems will be alike observationally if, and only if, all corre- 
sponding fluxes are equal. Equality of flux can thus be tested absolutely ; and 
different fluxes can be measured (according to a conventional code) by apparatus 
constituted with electrical material. From the flux we can pass by mathe- 
matical processes to the charge-and-current ‘vector, and this enables us to make 
the second contact between mathematical theory and the actual world, viz. the 
identification of electricity. We should now complete the cycle by showing 
that with electricity so defined apparatus can be constructed which will measure 
the original flux. Here, however, the analogy breaks down, at least temporarily. 
The use of electricity for measuring electromagnetic fluxes requires discon- 
tinuity, but this discontinuity is obtained in practice by complicated conditions. 
such as insulation, constant contact differences of potential, etc. We do not 
seem able to reduce the theory of electrical measurement to direct dependence 
on an innate discontinuity of electrical charge in the same way that geometrical 
measurement depends on the discontinuity of matter. For this reason the last 
chain of the cycle is incomplete, and it does not seem permissible to deduce 
that the discontinuous unit of electric charge must become the standard of 
electrical symmetry in the same way that the discontinuous unit of matter 
(turned in different orientations) becomes the standard of geometrical sym- 
metry. SO —_ 

According to (80°6) the mass of the electron is e*/47ra, where a is a length 
comparable with the radius of the electron. This is in conformity with the 
usual view as to the size of an electron, and is opposed to the point-electron suggested in § 78 as an alternative. But the mass here considered is a purely
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electromagnetic constant, which only enters into equations in which electro- 

magnetic forces are concerned. When the right-hand side of (8071) vanishes, 

the electron describes a geodesic just as an uncharged particle would; but 

m is now merely a constant multiplier which can be removed. We have still to 

find the connection between this electromagnetic mass 

= OPATA  vecesesccneceeteeeeeeeeeees (80°71) 

and the gravitational (i.e. gravitation-producing) mass m,, given by - 

mds = | QV AGO votes (80°72). 

Since we believe that all negative electrons are precisely alike, m,/m, will 

"be a constant for the negative electron; similarly it will be a constant for the 

positive electron. But positive and negative electrons are structures of very 

different kinds, and it does not follow that m,/m, is the same for both. Asa 

matter of fact there is no experimental evidence which suggests that the ratio 

is the same for both. Any gravitational field perceptible to observation is 

caused by practically equal numbers of positive and negative electrons, so that 

no opportunity of distinguishing their contributions occurs. If, however, we 

admit that the principle of conservation of energy is universally valid in cases 

where the positive and negative electrons are separated to an extent never 

yet realised experimentally, it is possible to prove that m,/m, is the same for 

both kinds. 
From the equation (80°1) we deduce the value of the electromagnetic 

energy-tensor as in §§ 76,77; only, H+” will not be expressed in the same 

units as the whole energy-tensor Gj, — 4.9). G, since the mass appearing in (80°1) 

is m, instead of m,. In consequence, the law for empty space (77-6) must be 

written 

Gi, — 49, @=- 802 (Fe Fut 3G FO Pep) ooo (80°8). 

We can establish this equation frstly by considering the motion of a positive 

electron and secondly by considering a negative electron. Evidently we shall 

obtain inconsistent equations in the two cases unless m,/m, for the positive 

electron is the same as for the negative electron. Unless this condition is ful- 

filled, we should violate the law of conservation of energy and momentum by 

first converting kinetic energy of a negative electron into free electromagnetic 
energy and. then reconverting the free energy into kinetic energy of a positive 

electron. 
Accordingly mg/m, is a constant of nature and it may be absorbed i in 

equation (80°8) by properly choosing the unit of F,,. 

81. Electromagnetic volume. 

If a,, is any tensor, the determinant |a,,| is transformed according to the 
law 

[Quy] = J? | a’ |
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by (48'8), whence it follows as in (49-3) that 

| Wl durl) Ot ceeseeee sessseveseseeseseeees (81°1) 
for any four-dimensional region is an invariant. 

We have already considered the case a,,=g,», and it is natural now to 
consider the case a,,=F,,. Since the tensor g,, defines the metric of space~ 
time, and the corresponding invariant is the metrical volume (natural volume) 
of the region, it seems appropriate to call the invariant 

Ve= {vc Fryy|) QT cccccsscssssssesesseseseses (812) 
the electromagnetic volume of the region. The resemblance to metrical volume 
is purely analytical. 

Since | #,,| is a skew-symmetric determinant of even order, it is a perfect 
square, and (81-2) is rational It easily reduces to 

V.= [oan + Fu Pot Fog Foy) Ot ceseseseseseae. (81°31). 
In Galilean coordinates this becomes 

V,= i (aX + BV + yZ)dr cece. seseessenees (81:32). 
It is somewhat curious that the scalar-product of the electric and magnetic 

forces is of so little importance in the classical theory, for (81:32) would seem 
to be the most fundamental invariant of the field. Apart from the fact that 
it vanishes for electromagnetic waves propagated in the absence of any bound 

. electric field (i.e. remote from electrons), this invariant seems to have no sig- 
nificant properties. Perhaps it may turn out to have greater importance when 
the study of electron-structure is more advanced. 

From (81:31) we have tm Oe, De Bed. 
Ky OK, OK; Oke Von] (Se baba) & 

the summation being forall permutations of the suffixes 

sf Pte (ee) ae (958) a 
Hence V, reduces to a’ surface-integral over the boundary of the region, and 
it is useless to consider its variations by the Hamiltonian method. The electro- 
magnetic volume of a region is of the nature of a flux through its three- 
dimensional boundary. 

82. Macroscopic equations. 
For macrescopic treatment the distribution and motion of the electrons are, 

‘averaged, and the equivalent continuous distribution is described by two new. 
quantities 

the electric displacement, P, Q, R, 
the magnetic induction, a, b,c,
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in addition to . . 

the electric force, X, Y, Z, 

the magnetic force, a, 8, ¥. 

These are grouped cross-wise to form the two principal electromagnetic tensors 

Fy= 0 -c b -X, He= 0 -y BB P (821). 
c 0 -a -Y Y 0 -a Q 

-b a 0 -Z . «Boa 0 R 

A Y @ 0 -P -Q -k 0 

He now plays the part previously taken by F#”; but it is no longer derived 

from F,, by a mere raising of suffixes. The relation between the two tensors 

is given by the constitutive equations of the material; in simple cases it is 

specified by two constants, the specific inductive capacity « and the per- 

meability y. ‘ 

Equations (78°78) and (73°74) are replaced by 

_ Ok, Oy) . 

Fee iy Bates cecssssesssseeeeee veseeees (82-2). 
Hy’ = J 

These represent the usual equations of the classical theory. It should be 

noticed that aH/dy —dG/dz is now a, not a. 

In the simple case the constitutive equations are 

(P,Q, BY=E (X,Y, 2); (ab, 0) = mw (a By yoevse--s(828), 
so that Lo 

A», H",.. H = 1 (fF, F ... F%); H*, H*, H* -K (Fs, Fx, F*), 

. B 
These simplified equations are not of tensor form, and refer only to coordinates 

with respect to which the material is at rest. For general coordinates the 

constitutive equations must be of the form 

Hw = pp"? Fp, 

where p*” is a tensor. 

The law of conservation of electric charge can be deduced from H%’ = J# 

just as in (73°76). . 

The macroscopic method is introduced for practical purposes rather than 

as a contribution to the theory, and there seems to be no advantage in de- 

veloping it further here. The chief theoretical interest lies in the suggestion 

ofa possible generalisation of Maxwell's theory by admitting that the covariant 

and contravariant electromagnetic tensors may in certain circumstances be 

independent tensors, e.g. inside the electron. This is the basis of a theory of 

matter developed by G. Mie. sO oe 

13—2



CHAPTER VII 
WORLD GEOMETRY 

Part I. Weyu’s TuEory 

83. Natural geometry and world geometry. 
Graphical representation is a device commonly employed in dealing with 

all kinds of physical quantities. It is most often used when we wish to set 
before ourselves a mass of information in such a way that the eye can take it 
in at a glance; but this is not the only use. We do not always draw the graphs 
on a sheet of paper; the method is also serviceable when the representation 
is in a conceptual mathematical space of any number of dimensions and pos- 
sibly non-Euclidean geometry. One great advantage is that when the graphical 
representation has been made, an extensive geometrical nomenclature becomes 
available for description—straight line, gradient, curvature, etc.—and a self- 
explanatory nomenclature is a considerable aid in discussing an abstruse 
subject. 

Jt is therefore reasonable to seek enlightenment by giving a graphical 
representation to all the physical quantities with which we have to deal. In 
this way physics becomes geometrised. But graphical representation does not 
assume any hypothesis as to the ultimate nature of the quantities represented. 
The possibility of exhibiting the whole world of physics in a unified geometrical 
representation is a test not of the nature of the world but of the ingenuity of 
the mathematician. , 

There is no special rule for representin g physical quantities such as electric 
force, potential, temperature, etc.; we may draw the isotherms as straight 
lines, ellipses, spheres, according to convenience of illustration. But there are 
certain physical quantities (i.e. results of operations and calculations) which 
have a natural graphical representation; we habitually think of them graphi- 
cally, and are almost unconscious that there is anything conventional in the 
way we represent them. For example, measured distances and directions are 
instinctively conceived by us graphically; and the space in which we repre- 
sent them is for us actual space. These quantities are not in their intrinsic 
nature dissimilar from other physical quantities which are not habitually repre- 
sented geometrically. If we eliminated the human element (or should we not 
say, the pre-human element?) in natural knowledge the device of graphical 
representation of the results of measures or estimates of distance would appear 
just as artificial as the graphical representation of thermometer readings. We 
cannot predict that a superhuman intelligence would conceive of distance in 
the way we conceive it; he would perhaps admit that our device of mentally
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plotting the results of a survey in a three-dimensional space is ingenious and 

scientifically helpful, but it would not occur to him that this space was more 

actual than the pu space of an indicator-diagram.. 

In our previous work we have studied this unsophisticated graphical repre- 

sentation of certain physical quantities, under the name Natural Geometry; 

we have slightly extended the idea by the addition of a fourth dimension to 

include time; and we have found that not only the quantities ordinarily 

regarded as geometrical but also mechanical quantities, such as force, density, 

energy, ate fully represented in this natural geometry. For example the energy- 

tensor was found to be made up of the Gaussian curvatures of sections of actual 

space-time (65°72). But the electromagnetic quantities introduced in the pre- 

ceding chapter have not as yet been graphically represented ; the vector «, was 

supposed to exist in actual space, not to be the measure of any property of actual 

space. Thus up to the present the geometrisation of physics is not complete. 

Two possible ways of generalising our geometrical outlook are open. It 

may be that the Riemannian geometry assigned to actual space is not exact). 

and that the true geometry is of a broader kind leaving room for the vector 

x, to play a fundamental part and so receive geometrical recognition as one 

of the determining characters of actual space. For reasons which will appear 

in the course of this chapter, I do not think that this is the correct solution. 

The alternative is to give all our variables, including «,, a suitable graphical 

representation in some new conceptual space—not actual space. With sufficient 

ingenuity it ought to be possible to accomplish this, for no hypothesis is implied 

as to the nature of the quantities so represented. This generalised graphical 

scheme may or may not be helpful to the progress of our knowledge; we 

attempt it in the hope that it will render the interconnection of electromag- 

netic and gravitational phenomena more intelligible. I think it will be found 

that this hope is not disappointed. 

In Space, Time and Gravitation, Chapter x1, Weyl’s non-Riemannian 

geometry has been regarded throughout as expressing an amended and 

exact Natural Geometry. That was the original intention of his theory*. 

For the present we shall continue to develop it on this understanding. But 

we shall ultimately come to the second alternative, as Weyl himself has done, 

and realise that his non-Riemannian geometry is not to be applied to actual 

space-time; it refers to a graphical representation of that relation-structure 

which is the basis of all physics, and -both~electromagnetic and metrical 

variables appear in it as interrelated. Having arrived at this standpoint we 

pass naturally to the more general geometry of relation-structure developed 

in Part II of this chapter. 
~, 

* The original paper (Berlin. Sitzungsberichte, 30 May 1918) is rather obscure on this point, . 

It states the mathematical development of the correctéd Riemannian geometry—‘“‘the physical 

application is obvious.” -But it is explicitly stated that the absence of an electromagnetic field is 

the necessary condition for Binstein’s theory to be valid—an opinion which, I think, is no longer 

held.
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We have then to distinguish between Natural Geometry, which is the 
single true geometry in the sense understood by the physicist, and World 
Geometry, which is the pure geometry applicable to a conceptual graphical 
representation of all the quantities concerned in physics. We may perhaps go 
so far as to say that the World Geometry is intended to be closely descriptive 
of the fundamental relation-structure which underlies the various manifésta- 
tions of space, time, matter and electromagnetism; that statement, however, 
is rather vague when we come to analyse it. Since the graphical representation 
is in any case conventional we cannot say that one method rather than another 
is right. Thus the two geometries discussed in Parts I and IT of this chapter 
are not to be regarded as contradictory. My reason for introducing the second 
treatment is that I find it to be more illuminating and far-reaching, not that 
I reject the first representation as inadmissible. 

In the following account of Wey!’s theory I have not adhered to the author’s 
order of development, but have adapted it to the point of view here taken up, 
which sometimes differs (though not, I believe, fundamentally) from that which 
he adopts. It may be somewhat unfair to present a theory from the wrong 
end—as its author might consider; but I trust that my treatment has not 
unduly obscured the brilliance of what is unquestionably the greatest advance 
in the relativity theory after Einstein’s work 

84. Non-integrability of length. a 
We have found in § 33 that the change 6A, of a vector taken by parallel 

displacement round a small circuit is 

6A, = 4 (Aye _ A yav) dSve 

=43 BiwA. ds 
- SE Bue AUS voecccccccsccecscesssecees. (841). 

Hence — A"SA,=4 Bug AXAcdS’*=0, ~ 
since By. is antisymmetrical in and e, 

‘Hence by (26:4) 54, is perpendicular to A,, and the length of the vector A, is unaltered by its parallel displacement round the circuit. It is only the direction which changes. 
We endeavoured to explain how this change of direction can occur in a curved world by the example ofa ship sailing on a curved ocean (§ 38). Having convinced ourselves that there is no logical impossibility in the result that the direction changes, we cannot very well see anything self-contradictory in the length changing also. It is true that we have just given a mathematical proof that the length does not change; but that only means that a change of length is excluded by conditions which have been introduced, perhaps inadvertently, in the postulates of Riemannian geometry. We can construct a geometry in which the change of length occurs, without landing ourselves in a contradiction. In the more general geometry, we have in place of (841) : 

SA pn =4* Bre AtdS'? cccccccsecssceceeee, (84-21),
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where *Bjyee is a more general tensor which is not antisymmetrical in » and 

e. It will be antisymmetrical in v and o since a,symmetrical part would be 

meaningless in (84°21), and disappear owing to the antisymmetry of dS". 

Writing , 

Ryu = £C* Bye * evon)3 Fuvwe=h (*Buroe + *Bucu)s 

8A p =F (Ryvoe + Farce) AUS seceesseeevenees (84°22), 

where R is antisymmetrical, and F symmetrical, in » and «. : 

Then the change of length / is given by a, 

§ (2) = 2A#*SAy = FyvceAPAtds? o.sceeeeeeeeee (843) 

which does not vanish. , 

To obtain Weyl’s geometry we must impose two restrictions on Fuse! 

(a) Fyyoe is of the special form Juel ves . 

(b) F,. is the curl of a vector. : 

The second restriction is logically necessary. We have expressed the change 

of a vector taken round a circuit by a formula involving a surface bounded by 

the circuit. We may choose different surfaces, all bounded by the same circuit ; 

and these have to give the same result for $A,. It is easily seen, as in Stokes’s 

theorem, that these results will only be consistent if the co-factor of dS’ is a 

curl. 
The first restriction is not imperatively demanded, and we shall discard it 

- in Part II of this chapter. It has the following effect. Equation (84°3) becomes 

8(P) = Frye. gueAt At. dS” 
=F,,PdS*, 

so that Hap FedS".... sccssesuesteavsasavecsucuee (84:4). 

The change of length is proportional to the original length and is independent 

of the direction of the vector; whereas in the more general formula (843) the 

change of length depends on the direction. 

One result of the restriction is that zero-length is still zero-length after 

parallel displacement round a circuit. If we have identified zero-length at one 

point of the world we can transfer it without ambiguity to every other point 

and so identify zero-length everywhere. Finite lengths cannot be transferred 

without ambiguity; a route of parallel displacement must be specified. 

Zero-length is of great importance in optical phenomena, because in 

Einstein’s geometry any element of the track of a light-pulse is a vector of 

zero-length; so that if there were no definite zero-length a pulse of light would 

not know what track it ought to take. It is because Weyl’s theory makes no 

attempt to re-interpret this part of Einstein’s theory that an absolute zero- 

length is required, and the restriction (a) is therefore imposed. 

‘Another result of the restriction is that lengths at the same point but in 

different orientations become comparable without ambiguity. The ambiguity 

is limited to the comparison of lengths at different places. .
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85. Transformation of gauge-systems. 

According to the foregoing section it is not possible to compare lengths 
(except zero-length) at different places, because the result of the comparison* 
will depend on the route taken in bringing the two lengths into juxtaposition. 

In Riemannian geometry we have taken for granted this possibility of 
comparing lengths. - The interval at‘any point has been assigned a definite 
value, which implies comparison with a standard ; it did not occur to us to 
question how this comparison at a distance could be made. We have now to 
define the geometry of the continuum ina way which recognises this difficulty. 

We suppose that a definite but arbitrary gauge-system has been adopted ; 
that is to say, at every point of space-time a standard of interval-length has 
been set up, and every interval is expressed in terms of the standard at the point where it is. This avoids the ambiguity involved in transferring intervals from one point to another to compare with a single standard. 

Take a displacement at P (coordinates, z,) and transfer it by parallel dis- placement to an infinitely near point P’ (coordinates, a, +dz,). Let its initial length measured by the gauge at P be J, and its final length measured by the gauge at P’ be l+dl. We may express the change of length by the formula 
(log 1) = ky dita ccscceccsessssesseceecceees (85°1), 

where x, represents some vector-field. If we alter the gauge-system we shall, of course, obtain different values of J, and therefore of Ke 
It is not necessary to specify the route of transfer for the small distance P to P’. The difference in the results obtained by taking different routes is by (844) proportional to the area enclosed by the routes, and is thus of the second order in da,. As PP’ is taken infinitely small this ambiguity becomes negligible compared with the first-order expression t,.d2,. 

‘ Our system of reference can now be varied in two ways—by change of coordinates and by change of gauge-system. The behaviour of gu, and x, for transformation of coordinates has been fully studied ; we have to examine how they will be transformed by a transformation of gauge. 
A new gauge-system will be obtained by altering the length of the standard at each point in the ratio A, where 2X is an arbitrary function of the coordinates. If the standard is decreased in the ratio 2, the length of a displacement will be increased in the ratio A. If accents refer to the new system 

ds AUS oeeeeceecescsssecsesenee w++e(85°2), 
The components da, of a displacement will not be changed, since we are not altering the coordinate-system, thus 

i (85:3). 
Hence G wd, dz,’ = ds? = r2ds? = VM Jurda,dx, = 79,,dx,'dzx,, 
so that Juv = Yay ssssecscccesccccrecessssces (85°41),
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It follows at once that GH AEG seececcecceneeccetseeceneeoees (85°42), 

GY NAG” a caccsncenrcceeeeeresoeees (85°48), 

Mag dt =MV —G dr cessseseeeeees vevees(85'44). 

Again, by (85°1) ky dx, =d (log U’) = d flog (AD} 

, = d (log 1) + d (log A) 

0 (log % = yar, + 2B) - ) det,. | 

Or, writing D=HlDA ..ccecceeceeenees seeseceeceseoess (85°51), 

oo, Q ~ 
then Ky =Kpt se snecenesenenceceeeeoeseuens (85°52). 

The curl of x, has an important property; if 

  __Oky  OKy 
Puy — acy 7- Or ’ 

we see by (85°52) that Fy = Bay cececccreceeecesescasscneeseanees (85°6), 

so that F,, is independent of the gauge-system. This is only true of the co- 

variant tensor; if we raise one or both suffixes the function » is introduced 

by (85°43). ae 

It will be seen that the geometry of the continuum now involves 14 functions 

which vary from point to point, viz. ten g,, and four Kj. These may be sub- 

jected to transformations, viz. the transformations of gauge discussed above, 

and the transformations of coordinates discussed ‘in Chapter II. Such trans- 

formations will not alter any intrinsic properties of the world; but any changes 

in the g,, and «, other than gauge or coordinate transformations will alter the 

‘ intrinsic state of the world and may reasonably be expected to change its 

physical manifestations. oe 

The question then arises, How will the change manifest itself physically if 

we alter the x,? All the phenomena of mechanics have been traced to the 9, 

so that presumably the change is not shown in-mechanics, or at least the 

primary effect is not mechanical. We are left with the domain of electro- 

* magnetism which is not expressible in terms of g,, alone; and the suggestion 

arises that an alteration of x, may appear physically as.an alteration of the 

electromagnetic field. 

We have seen that the electromagnetic field is described by a vector already 

called «,, and it is an obvious step to identify this with the «, introduced in 

Weyl’s geometry. According to observation the physical condition of the world 

is not completely defined by the g,, and an additional vector must be specified; 

according to theoretical geometry the nature of a continuum is not completely 

indicated by the g,» and an additional vector must be specified. The cop- 

clusion is irresistible that the two vectors are to be identified. 

Moreover according to (85°52) we can change «, to x, + d/dx, by a change 

of gauge without altering the intrinsic state of the world. It was explained at
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the beginning of § 74 that we can make the same change of the electromagnetic 
potential without altering the resulting electromagnetic field. 

We accordingly accept this identification. The x, and F,, of the present 
geometrical theory will be the electromagnetic potential and force of Chapter VI. 
It will be best to suspend the convention x =0 (741) for the present, since 
that would commit us prematurely to a particular gauge-system. 

It must be borne in mind that by this identification the electromagnetic 
force becomes expressed in some natural unit whose relation to the c.G.s. 
system is at present unknown. For example the constant of proportionality 
in (77°7) may be altered. F,, is not altered by any change of gauge-system 
(85°6) so that its value is a pure number. The question then arises, How many 
volts per centimetre correspond to F,,=1 in any given coordinate-system ? 
The problem is a difficult one, but we shall give a rough and rather dubious 
estimate in § 102. 

I do not think that our subsequent discussion will add anything material 
to the present argument in favour of the electromagnetic interpretation of k,. 
The case rests entirely on the apparently significant fact, that on removing an 
artificial restriction in Riemannian geometry, we have just the right number 
of variables at our disposal which are necessary for a physical description of 
the world. . 

8&6. Gauge-invariance. 

It will be useful to discover tensors and invariants which, besides possessing 
their characteristic properties with regard to transformations of coordinates, 
are unaltered by any transformation of gauge-system. These will be called 
in-tensors and in-invariants. 

There are other tensors or invariants which merely become multiplied by 
a power of X when the gauge is altered. These will be called co-tensors and 
co-invariants, 

Change of gauge is a generalisation of change of unit in physical equations, 
the unit being no longer a constant but an arbitrary function of position. We 
have only one unit to consider—the unit of interval. Coordinates are merely 
identification-numbers and have no reference to our unit, so that a displace- 
ment dz, is an in-vector. It should be noticed that if we change the unit-mesh 
of a rectangular coordinate-system from one mile to one kilometre, we make 
a change of coordinates not a change of gauge. The distinction is more obvious 
when coordinates other than Cartesian are used. The most confusing case‘is 
that of Galilean coordinates, for then the special values of the g,, fix the length 
of side of unit mesh as equal to the unit of interval; and it is not easy to keep 
in mind that the displacement between two corners of the mesh is the number 
1, whilst the interval between them is 1 kilometre. 

According to (85°6) the electromagnetic force F,, is an in-tensor, F#” is 
only a co-tensor, and-F,,,/"" a co-invariant,
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Transforming the 3-index symbol [», o] by an alteration of gauge we have 

by (85°41) 

‘— 1 Q 2 9ue) 0 (2 9,2) 0 (A? Jur) 
(uv, a} ~ 2 ( ax, + Oia 7 Oks ) 

on? an? an? - 
=? (pv, o] +49 ue Ba, T B90 ae — 19ua 

=A [uv, oc] +02 (Guede + Gre Pu — Jurho) 

by (85°51). We have written bp = oe 
: ie 

Multiply through by g’** =A77g7*; we obtain ° 

py, a} = {py a} + 9% de + 95 bu — Juv G® vereeerreees (86:1). 

Let — *{py, a} = fav, af — Ir —G8KutGuvk® sererererree (862). 

“Then by (86'1) and (85°52) . | 
*{uv, aj’ = *{uv, a} vecescenaseeseaceesnees (86°38). 

The “generalised 3-index symbol” *{uv, a} has the “in- ” property, being 

unaltered by any gauge-transformation. It is, of course, not a tensor. 

We shall generally indicate by a star (*) quantities generalised from cor- 

responding expressions in Riemannian geometry in order to be independent of 

(or covariant with) the gauge-system. The following illustrates the general 

method of procedure. 

Let A’ be a symmetrical in-tensor; its divergence (51°31) becomes on 

gauge-transformation , 

  

w 18 yey 2 @ 
A’ = Sy is AEM YD 40 AM) 5, 968) a 

oy 0 .j— te OGas oe OM ap 1 on 

gan Ah 9A oe tA Ge, BAN 983 ae 

= Ar, + 4A% by Ade 
Hence by (85°52) the quantity 

AM AY, 4AM, + Ally coseeeeceereeeseree (864) 

is unaltered by any, gauge-transformation, and is accordingly an in-vector. 

- This operation may be called in-covariant differentiation, and the result is 

the in-divergence. -. . 

The result is modified if A#” is the in-tensor, so that Aj, is a co-tensor. The 

different associated tensors are not equally fundamental in Weyl's geometry, 

since only one of them can be an in-tensor. . 

Unless expressly stated a final suffix will indicate ordinary covariant (not 

" in-covariant) differentiation.
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87. The generalised Riemann-Christoffel tensor, 

Corresponding to (34°4) we write 

* Bing == 5 Mg, + 0,0} Mav, e} + 52 {uo c} —*Ipn, a} *fac, 
FO (871). 

This will be an in-tensor since the starred symbols are all independent of 
the gauge; and it will be evident when we reach (87-4) that the generalisa- 
tion has not destroyed the ordinary tensor properties. 

We consider the first two terms; the complete expression can then be 
obtained at any stage by interchanging v and o and subtracting. The ad- 
ditional terms introduced by the stars are by (86-2) 

0 € ¢€ a a 

By (Gute Gorka + Juv) + (— Gute Jokn + Juor*) fav, €} 

+ (— Gatty — Joka + Javk*) {uo a} + (— Guta Goky + Juok*)(— 95K» — G5 ka + Jark) 
<Oky | 0K Ox® OGw = InZg + 958 — Iu ge — — Ke {uv, e} — x, {ov, €} + gue {av, e}a* 

— ky {10,€} — 95 (uo, a tea +H [Mo] + ghee + Skok n — Justo 
+5 hak + Go Ku Ko — Jovi k® — Quark Ky —JucJyk" Ke + yok) K* ...(87°2), 

which is equivalent to 

e Oxy e ¢€ « 
Judy + Gene — Juv (K8)o + Gi hu ka — Ge Juakak® + ugk K% -+.(87°3). 

[To follow this reduction let the terms in (87-2) be numbered in order 
from 1 to 19. It will be found that the following terms or pairs of terms are 
symmetrical in vy and a, and therefore disappear when the expression is 
completed, viz. 5 and 8, 6, 11, 12 and 14, 13 and 17,16. Further 4 and 10 
together give —[ve, 4] x‘, which is rejected for the same reason. We combine’ 
2 and 9 to give g(*,)o. We exchange 7 for its counterpart — g,, {ac, e} x 
in the remaining half of the expression, and combine it with 3 to give 
— Gurl )o] 

Hence interchanging v and a, and subtracting, the complete expression is 

  

€ ie e€ OK, Oke € € € € * Bove = Bove +9. Ge _ a) + (9) kus — Jo Kur) + (Jue Ke — Iuvke) 

T (Gi kp ko~ Goku hy) + (95 Juv J Jue) Kak* + (Yuoky ~ Juris) K*..(87'4), 
Next set e=o. We obtain the contracted in-tensor 

* Gv = Gye Fav + (Kav — teas) + (Kav — Juve) + (Ky key — Atay) 
+ (4.9 u» — Juv) Kak* + Cr Ky — Juvtak*) 

= Guy — 2Buv— (Kay + Kyp) — Juvka — 2p ty + WyyKkakrseeees (87:5) t. 

f The unit of x, is arbitrary; and in the generalised theory in Part II the kp there employed 
corresponds to twice the xy of these formulae. This must be borne in mind in comparing, for 
example, (87°5) and (94°3).
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Finally multiply by g*”. We obtain the co-invariant 

, GF = G — Bie te Gig K cc cccscseccnccsevccoeees (87°6). 

The multiplication by g*” reintroduces the unit of gauge, so that *@ 
becomes multiplied by A~? when the gauge is transformed. 

If the suffix ¢ is lowered in (87-4) the only part of *Byee which is sym- 
metrical in p and ¢€ i8 Gye (O%,/OLq — OK /02,) = JueF ye, Which agrees with the 

condition (a) of Weyl’s geometry (§ 84). 

88. The in-invariants of a region. 

There are no functions of tke g,, and «x, at a point which are in- 
invariants; but functions which are in-invariant-densities may be found as 

follows— 

Since V—g becomes multiplied by 4 on gauge-transformation we must 

combine it with co-invariants which become multiplied by A~*. The following 

are easily seen to be in-invariant-densities : 

We can also form in-invariant-densities from the fundamental tensor of 

the sixth rank. Let *(*Byvep)ee be the second co-covariant derivative of the 

co-tensor *Byyep; the spur formed by raising three suffixes and contracting 

will vary as A~‘ and give an in-invariant-density on multiplication by v= 9. 

There are three different spurs, according to the pairing of the suffixes, but 

I believe that there are relations between them so that they give only one 

independent expression. The simplest of them is 

gf” 97°92 *(* Buvoplap V— J = *CI*G VR geeeeereeeeee (88°38). 

Tf 9 stands for any in-invariant-density, 
fudr 

taken over a four-dimensional region is a pure number independent of co- 

ordinate-system and gauge-system. Such a number denotes a property of 

the region which is absolute in the widest sense of the word; and it seems 

likely that one or more of these numerical invariants of the region must 

stand in a simple relation to all the physical quantities which measure the 

more general properties of the world. The simplest operation which we can 

perform on a regional invariant appears to be that of Hamiltonian differen- 

tiation, and a particular importance will therefore be attached to the tensors 

nA/ng,, nA/Nne,. 
It has been pointed out by Weyl that it is only in a four-dimensional 

world that a simple set of regional in-invariants of this kind exists. In an 
odd number of dimensions there are none; in two dimensions there is one, 

*G/—g; in six or eight dimensions the in-invariants are all very complex
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involving derivatives of at least the fourth order or else obviously artificial. 
This may give some sort of reason for the four dimensions of the world. The 
argument appears to be that a world with an odd number of dimensions 
could contain nothing absolute, which would be unthinkable. 

These conclusions are somewhat modified by the existence of a particularly 
simple regional in-invariant, which seems to have been generally overlooked 
because it is not of the type which'investigators have generally studied. The 
quantity 

LV {H [FG | SAT cee ceeccceccessseseeeseeees (88-4) 
is an invariant by (81'1) and it contains nothing which depends on the 
gauge. It is not more irrational than the other in-invariants since these 
contain V—g. We shall find later that it is closely analogous to the metrical 
volume and the electromagnetic volume (§ 81) of the region. It will be 
called the generalised volume. This in-invariant would still exist if the worl 
had an odd number of dimensions. ‘ 

It may be remarked that Fe /—g, or $#*, is an in-tensor-density. Thus 
the factor V—gshould always be associated with the contravariant tensor, if 
the formulae are to have their full physical significance. The electromagnetic 
action-density should be written : 

F,,5*, 
and the energy-density 

, : — FyaS"* + + ne oper / 

The field is thus characterised by an intensity F,, or a quantity of density 
$*”; both descriptions are then independent of the gauge-system used. 

89. The natural gauge. 

For the most part the laws of mechanics investigated in Chapters III—V 
have been expressed by tensor equations but not in-tensor equations. Hence 
they can only hold when a particular gauge-system is used, and will cease to 
be true if a transformation of gauge-system is made. The gauge-system for 
which our previous work is valid (if it is valid) is called the natural gauge; 
it stands in somewhat the same position with respect to a general gauge as 
Galilean coordinates stand with respect to general coordinates. 

Just as we have generalised the equations of physics originally. found for 
Galilean coordinates, so we could generalise the equations for the natural 
gauge by ‘substituting the corresponding in-tensor equations applicable to 
any gauge. But before doing so, we stop to ask whether anything would be 
gained by this generalisation. There is not much object in generalising the 
Galilean formulae, so long as Galilean coordinates are available ; We required 
the general formulae: because we discovered that there are regions of the world where no Galilean coordinates exist. Similarly we shall only need the 
in-tensor equations of mechanics if there are regions where-no natural 
gauge exists; that is to say, if no gauge-system can be found for which
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Einstein’s formulae are accurately true. It was, I think, the original idea of 

Weyl’s theory that electromagnetic fields were such regions, where accordingly 
in-tensor equations would be essential. 

’ There is in any case a significant difference between Einstein’s genera- 
lisation of Galilean geometry and .Weyl’s generalisation of Riemannian 
geometry. We have proved directly that the condition which renders Galilean 
coordinates impossible must manifest itself to us asa gravitational field of 
force. That is the meaning of a field of force according to the definition of force. 
But we cannot prove that the break-down of the natural gauge would manifest 
itself as an electromagnetic field; we have merely speculated that the world- 
condition measured by the vector «, which appears in the in-tensor equations 
may be the origin of electrical manifestations in addition to causing the 

failure of Riemannian geometry. 
Accepting the original view of Weyl’s theory, the ambiguity in the. 

comparison of lengths at a distance has hitherto only shown itself in practical 
experiments by the electromagnetic phenomena supposed to be dependent on 
it but not (so far as we. can see) immediately implied by it. This is not 
surprising when we attempt to estimate the order of magnitude of the 

ambiguity. Taking formula (84-4), di/l=4F,,dS, we might perhaps expect 

that di/l would be comparable with unity, if the electromagnetic force F,, 

were comparable with that at the surface of an electron, 4, 10% volts per cm., 

and the side of the circuit were comparable with the radius of curvature of 

space. Thus for ordinary experiments di/l would be far below the limits of 

experimental detection. Accordingly we can have a gauge-system specified 

by the transfer of material standards which is for all practical purposes 

unambiguous, and yet contains that minute theoretical ambiguity which is 

only of practical consequence on account of its side-manifestation as the - 

cause of electrical phenomena. The gauge-system employed in practice is 

the natural gauge-system to which our previous mechanical formulae apply— 

or rather, since the practical gauge-system is slightly. ambiguous and the 

theoretical formulae are presumably exact, the natural gauge is an exact 

_gauge with which all practical gauges agree to an approximation sufficient 

for all observable mechanical and metrical phenomena. 

According to Weyl the natural gauge is determined by the condition 

FG SAN eee “escsseeeeaeeeseesees (89-1), 

where Vis a constant everywhere. . . 

This attempt to reconcile a theoretical ambiguity of our system of 

measurement with its well-known practical efficiency seems to be tenable, 

though perhaps a little ovérstrained. But an alternative view is possible. 

This states that— 

Comparison of lengths at different places is an unambiguous. procedure 
having nothing to do with parallel displacement of a vector.
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The practical operation of transferring a measuring-scale from one place 
to another is not to be confounded with the transfer by parallel displacement 
of the vector representing the displacement between its two extremities. If 
this is correct Einstein’s Riemannian geometry, in which each interval has 
a unique length, must be accepted as. exact; the ambiguity of transfer by 
parallel displacement does not affect his work. No attempt is to be made to 
apply Weyl’s geometry as a Natural Geometry; it refers to a different 
subject of discussion. 

Prof. Weyl himself has come to prefer the second alternative. He drawsa 
useful distinction between magnitudes which are determined by persistence 
(Beharrung) and by adjustment (Hinstellung); and concludes that the di- 
mensions of material objects are determined by adjustment. The size of an 
electron is determined by adjustment in proportion to the radius of curvature 
of the world, and not by persistence of anything in its past history. This is 
the view taken in § 66, and we have seen that it has great value in affording 
an explanation of Einstein’s law of gravitation. 

The generalised theory of Part II leads almost inevitably to the second 
alternative. The first form of the theory has died rather from inanition 
than by direct disproof; it ceases to offer temptation when the problem is 
‘approached from a broader point of view. It now seems an unnecessary 
speculation to introduce small ambiguities of length-comparisons too small 
to be practically detected, merely to afford the satisfaction of geometrising 
the vector x, which has more important manifestations, 

The new view entirely alters the status of Weyl’s theory. Indeed it is no 
longer a hypothesis, but a graphical representation of the facts, and its value 
lies in the insight suggested by this graphical representation. We need not 

' now hesitate for a moment over the identification of the electromagnetic 
- potential with the geometrical vector x,; the geometrical vector is the 
potential because that is the way in which we choose to represent the 
potential graphically. We take a conceptual space obeying Weyl’s geometry 
and represent in it the gravitational potential by the g,, for that space and 
the electromagnetic potential by the x, for that space. We find that all. 
other quantities concerned in physics are now represented by more or less 
simple geometrical magnitudes in that space, and the whole picture enables 
us to grasp in a comprehensive way the relations of physical quantities, 
and more ‘particularly those reactions in which both electromagnetic and 
mechanical variables are involved. Parallel displacement of a vector in this 
space is a definite operation, and may in certain cases have an immediate 
physical interpretation; thus when an uncharged particle moves freely in a 
geodesic its velocity-vector is carried along by parallel displacement (33°4) ; 
but when a material measuring-rod is moved the operation is not one of 
parallel displacement, and must be described in different geometrical terms, 
which have reference to the natural gauging-equation (89-1),
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When in Part II we substitute a conceptual space with still more general 
geometry, we shall not need to regard it as in opposition to the present 
discussion. We may learn more from a different graphical picture of what is 
going on; but we shall-not have to abandon anything which we can perceive 
clearly in the first picture. 

We consider now the gauging- equation *G = 4 assumed by Weyl. It is 
probably the one which most naturally suggests itself. Suppose that we 
have adopted initially some other gauge in which *G is not constant. *G is 
a co-invariant such that when the measure of interval is changed in the ratio 
uw, *G changes in the ratio z-*. Hence we can obtain a new gauge in which 
*G becomes constant by transforming the measure of the interval in the 

ratio *G7 3, 
By (87°6) the gauging-equation is equivalent to 

G —6KE + Ge akK*H=4N cece tee eee eees (89:2). 

But by (54°72) the propor-density of matter is 

pepe (G4) 
3 a = Go (Ka Hak) cicccccscneeceenssenssenees (89°3) 

For empty space, or for space containing free electromagnetic fields without 
electrons, p) = 0, so that 

except within an electron. This condition should replace the equation «i =0 
which was formerly introduced in order to make the electromagnetic potential 
determinate (74°1). 

We cannot conceive of any kind of measurement with clocks, scales, 
moving particles or light-waves being made inside an electron, so that any 
gauge ‘employed i in such a region must be purely theoretical having no signi- 
ficance in. terms of practical measurement. For the sake of continuity we 
define the natural gauge in this region by the same equation *G = 4); it is 

ag suitable as any other. Inside the electron «% will not be equal to x.«* and 
the difference will determine the mass of the electron in accordance with 
(89:3). But it will be understood that this application of (89°3) is merely 
conventional; although it appears to refer to experimental quantities, the 
‘conditions are such that it ceases to be possible for the experiments to be 
made by any conceivable device. 

90. Weyl’s action-principle. 

Weyl adopts an action-density 

AN = G= (8G? — oF FO) Vig  ceccececseeenes (90'1), 

the constant a being a pure number. He makes the hypothesis that it obeys 

EB : 14
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the principle of stationary action for all variations 89,,, 5«, which vanish at 
the boundary of the region considered. Accordingly 

a orn 
Now Ney, 

Weyl himself ‘states that his action-principle is probably not realised in 
nature exactly in this form. But the procedure is instructive as showing the 
kind of unifying principle which is aimed at according to one school of 
thought. 

_ . The variation of *G?/—@ is . 

2*G8(*GV—g) —*G28(V—9), 
which in the natural gauge becomes by (89:1) 

828 (*GV—g) — 16028(W 9). 

O esceessseesseesseeseees(90°2), 

Hence by (87°6) 

8 (A VG) = 3 [(G— OxS-+ Gieax®—20— BFF) Vag} 

where 8 = a/8n. . 
The term «2 —g can be dropped, because by (51°11) 

afm 9 
Ka Vag = 5 (non —9)- 

This can be integrated, and yields a surface-integral over the boundary of the 
region considered. Its Hamiltonian derivatives accordingly vanish. 

‘Again . 

5 (xan? V = 9) = Karpd (78 V —Q) + GFN = G(eadkp + Kp Sx) 

= Kata N — 9 (89° +4.9°%G** Sgus) + 29° VG xp dice 
= Kate — 9 (— git g' + 2993 gu) 8g, 4 2x2 Vg Sieg 
MAG (— KK +4." kant) SGuv + 2x* V— 9 Ska. 

nh Hence Tigne (Ha 2) = (— KRY AAG AK) occ ccecccccees (90°41), 

nh 
fic. (Kak*) = Ki cecemecsccsensaccscncececees (90°42). 

Hamiltonian derivatives of the other terms in (90°3) have already been found 
in (60°43), (79°31) and (79°32). Collecting these results we have 

1 na 
Sr Nguv = — (Gur — Zguy G)—6 (x#nr — 3g” Kak") —Agt” — 20TH 

= 877" —I29Fe 6 (xP RY — AG" tak?) 

. qd). . 1 ha . by (54°71); and Bi Tk, L2k# + 4BT" oc ceececeeeeeces (90°52).
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If the hypothesis (90:2) is correct, these must vanish. The vanishing of 
(90°51) shows that the whole energy-tensor consists of the electromagnetic 
energy-tensor together with another term, which must presumably be identi- 
fied with the material energy-tensor attributable to the binding forces of the 
electrons*. The constant 28/8 correlates the natural gravitational and 
electromagnetic units. The material energy-tensor, being the difference be- 
tween the whole tensor and the electromagnetic part, is accordingly . 

J[+ = 2 (x 1” — EGP Kak") orcceenvcecerecees (90°61). 

Hence, multiplying by g,,, 

paMa- = Hak® — ccssessesseacaravees (90°62), 

The vanishing of (90°52) gives) the remarkable equation . 

SAE BT cieccecccscccescscesceeenes (90°7 £5. 

And since J¢ =0 (73° 77), we must have 

Wh =O ceeessesessecstesteeneatenes (90°72), 
agreeing with the original limitation of «, in (74:1). 

We see that the formula for p, (90°62) agrees 3 with that previously found 

(89°8) having regard to the limitation «:=0, 
The result (90°62) becomes by (90°71) 

2 

po=— se JT 

This shows that matter cannot be constituted without electric charge and 

current. But since the density of matter is always positive, the electric charge- 

and-current inside an electron must be a space-like vector, the square of its 

length being negative. It would seem to follow that the electron cannot be 

built up of elementary electrostatic charges but resolves itself into something 

more akin to magnetic charges. 
It will be noticed that the result (90- 72) i is inconsistent with the formula 

Ka k= x2 which we have found for empty space (89° 4). Theexplanation is afforded 

by (90°71) which requires that a charge-and-current vector must exist wherever 

x, exists, so that no space is really empty. On Weyl’s hypothesis x; =0 is the 

condition which holds in all circumstances; whilst the additional nontitien 

«= x,«* holding in empty space reduces to the condition expressed by J* = 

It is supposed that outside what is ordinarily considered to be the  cndary 

of the electron there is a small charge and current 3 a Ke ‘extending as far as the 
B 

electromagnetic potential extends. : 

For an isolated electron at rest in Galilean coordinates em elr, so that 
Kakt=e/r. On integrating throughout infinite space the result is apparently 

, 4 I doubt if this is the right interpretation. Seo the end of § 100. 

14—2
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infinite; but taking account of the finite radius of space, the result is of order 
eR. By (90°62) this represents the part of the (negative) mass of the electront 
which is not concentrated within the nucleus. The actual mass was found in 
§ 80 to be of order e/a where a is the radius of the nucleus. The two masses 
éR and e/a are not immediately comparable since they are expressed in 
different units, the connection being made by Weyl’s constant 8 whose value 
is left undecided. But since they differ in dimensions of length, they would 
presumably become comparable if the natural unit of length were adopted, 
viz. the radius of the world; in that case e/a is at least 10 times e??, so that 
the portion of the mass outside the nucleus is quite insignificant. 

The action-principle here followéd out is obviously speculative. Whether 
the results aré such as to encourage belief in this or some similar law, or whether they tend to dispose of it by something like a reductio ad absurdum, I will 
leave to the judgment of the reader. There are, however, two points which seem ‘to call for special notice— 

(1) When we compare the forms of the two principal energy-tensors 

Te 5 (C,—495 (6-2), . 
re Ej Fyg P+ gh Fg F, | it is rather a mystery how the second can be contained in the first, since they seem to be anything but homologous, . The connection is simplified by observing that the difference between them occurs in hd /[Nguy (90°51) accompanied only by a term which would presumably be insensible except inside the electrons, But the connection though reduced to simpler terms is not in any way explained by Weyl’s action-principle. It is obvious that his action as it stands has no deep significance; it is a mere stringing together of two in-invariants of different forms. To subtract F,,F#” from *G? is a fantastic procedure which has no more theoretical justification than subtracting Ey, from 7%. At the most we can only regard the assumed form of action A asa step towards some more natural combination of electromagnetic and gravitational variables, 

(2) For the first term of the action, * GV —g was chosen instead of the simpler *@ V—g, because the latter is not an im-invariant-density and cannot be regarded as a measure of any, absolute property of the region. It is interesting to trace how this improvement leads to the ‘appearance of the term 8(—22V/—g) in (90°8), so that the cosmical curvature-term in the expression for the energy-tensor now appears quite naturally and inevitably. We may contrast this with the variation of GV —g worked out in § 60, where no such term appears. In attributing more fundamental importance to the in-invariant *Gv/—g than to the co-invariant #@/ —g9, Wey!’s theory makes an undoubted advance towards the truth, os 
+ This must not be confuse d with mass of the energy of the electromagnetic field. The present. discussion relates to invariant mass to which the field contributes nothing.
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Part IT. GENERALISED, ‘THEORY 

-91. Parallel displacement: 

Let an infinitesimal displacement A* at the point P (coordinates, 2) be 
carried by parallel displacement to a point P’ (coordinates, «, -+ dw,) infinitely 
near to P. The most general possible continuous formula for the change of A# 
is of the form 

DAH S— TE Atd ay cecccscsecseneeeseee 469171) 

where Vyas which is not assumed to be a tensor, represents 64 ar bitrary 

coefficients. Both A* and dz, are infinitesimals, so that there is no need to 

insert any terms of higher order. 
We are going to build the theory afresh starting from this notion of 

infinitesimal parallel displacement; and by so doing we arrive at a generalisa- 

tion even wider than that of Weyl. Our fundamental axiom is that parallel 

displacement has some significance in regard to the ultimate structure of the 

world—it does not much matter what, significance. The idea is that out of the 

whole group of displacements radiating ‘from P’, we can select one A# +dA* 

which has some kind of equivalence to the displacement A“ at P, We do not 

define the nature of this equivalence, except that it shall have reference to the 

part played by A“ in the relation-structure which underlies the world of physies. 

Notice that— 

(1) This equivalence is only supposed to exist in the limit when P and P’ 

are infinitely near together. For more distant points equivalence can in general 

only be approximate, and gradually becomes indeterminate as the ‘distance is 

increased. It can be made determinate by. specifying a particular route of 

connection, in which case the equivalence is traced step by step along the 

route. . 

(2) The equivalence is not supposed to: exist between any world-relations 

other than displacements. Hitherto we have applied parallel displacement to 

any tensor, but in this theory we only use it for displacements. 

(3) It is not assumed that there is any complete observational test of 

equivalence. This is rather a difficult point which will be better appreciated 

later. The idea is that the scheme of equivalence need not be determinate 

observationally, and may have permissible transformations ; just as the scheme 

of coordinate-reckoning is not determinate observationally ‘and is subject to 

transformations, 

Let PP, represent the displacement Ata Sa, which on parallel displace- 

ment to P’ becomes P’'P,; then by (91° - the difference of coordinates of P,’ 

and P, is 
At +d At = Say, — _T# ban dit, 

so that the coordinates of P,’ relative to P are 

dit, + 82, — PRB on seseveveeeaee (912).
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Interchanging the two displacements, ite. displacing PP’ along PP,, we shall 
not arrive at the same point P,’ unless 

Da a, ceseeceeeceeeeesccecsseseeuees (91:3). 
When (91°83) is satisfied we have the parallelogram law, that if a displacement 

_ AB is equivalent to CD, then AC is equivalent to BD. 
This is the necessary condition for what is called affine geometry. It is , 

adopted by Wey] and other writers; but J. A. Schouten ina purely geometrical 
investigation has dispensed with it. I shall adopt it here. 

All questions of the fundamental axioms of a science are difficult. In 
general we have to start somewhat above the fundamental plane and. develop 
the theory backwards towards fundamentals as well as forwards to results, I 
shall defer until § 98 the examination of how far the axiom of parallel dis- 

. placement and the condition of affine geometry are essential in translating the 
properties of a relation-structure into mathematical expression ; and I proceed 
at once to develop the consequences of the specification here introduced. 

By the symmetry condition the number of independent I'¥, is reduced to 
40, variable from point to point of space. They are descriptive of the relation- 
structure of the world, and should contain all that is relevant to physics. Our 
immediate problem is to show how the more familiar variables of physics can 
be extracted from this crude material. 

92. Displacement round an infinitesimal circuit. 
Let a displacement A* be carried by parallel displacement round a small 

circuit C. The condition for parallel displacement is by (91:1) 
oA , 
  

  

aa | (92:1). 

Hence the difference of the initial and final values is 

oAe 
SAK = daz, 

c Ox, . 

ae | T# Atda, 
Cc . 

= 1 Q a a; a vo” | =5/fas, (4) ~ a5 (Th A9} a 
by Stokes’s theorem (32°3). - 

The integrand is equal to 

A*(2 re — 2 rs.) +P% 2a re 24s ~ Nee” "Oa, * On, °* Oa, | 
=A‘ 3 é : @ e, a € = 1A (ah ~ gg Ph )-TRT SA tT A by (92:1) 

=—*Bt As, ‘ 

-_2 On: « na | where : "Boo =~ 57 Veta Te +040 s TAT veeeecece (92:2),
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Hence Bate [rBs. Ards esucsesteneetseaeess (92°31). 

As in § 88 the formula applies only to infinitesimal circuits. In evaluating 

the integrand we assumed that A® satisfies the condition of parallel displace- 

ment (92'1) not only on the boundary but at all points within the circuit. No 

single value of A* can satisfy this, since if it holds for one circuit of displace- 

ment it will not hold for a second. But the discrepancies are of order pro- 

portional to dS*’,and another factor dS” occurs in the integration; hence(92°31) 

is true when the square of the area, of the circuit can be neglected. w 

Writing =" = | | dS? for a small circuit, (92°31) approaches the limit 

SAH = — AY BEATS ee deceeeeeeees (92°32), 

which shows that *B4, is a tensor}. Moreover it is an in-tensor, since we have 

not yet introduced any gauge. In fact all quantities introduced at present 

must have the “in-” property, for we have not begun to discuss the conception 

of length. , 

We can form an in-tensor of the second rank by contraction. With the 

more familiar arrangement of suffixes, 

. a 0 

  

joa Tn +g Peet Poul te DoE Ga veces (92°41), 

*Gy=— a Mat = Pou + Poul ee —Te.T ba veces (92°42). 

Another contracted in-tensor is obtained by setting e = p, viz. 

0 a _9? = Te Moye . 
2Fye Dats Prat an, Log cceeeeeeeeseeeeees (92°48). 

We shall write Ty De, ceereeceeeee veveceeseseeeee «+ (925). 

ar, aP. DB yg cette tence a eeen eee enees 2: Then rea Ge (92:55) 

Tt will be seen from (92°42) thatt 

a, oF 
*Guv—- me A DB yy vececceeencencre es 2 ww *Gy = aa, ~ day, QB yy vveesseeeees (92°6), 

so that F,, is the antisymmetrical part of *Gys. Thus the second mode. of 

contraction of *Bt,, does not add anything not obtainable by the first mode, 

and we need not give F’,, separate consideration. 

According to this mode of development the in-tensors * Bi, and *G,, are 

the most fundamental measures of the intrinsic structure of the world. They 

+ Another independent proof that *BM , is a tensor is obtained in equation (94°1); so that if 

the reader is uneasy about the rigour of the preceding analysis, he may regard it as merely 

suggesting consideration of the expression (92-2) and use the alternative proof that it is a tensor. 

+ Here for the first time we make use of the symmetrical property of Tae if Ty lye the 

analysis at this point becomes highly complicated.
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take precedence of the g,,, which are only found at a later stage in our theory. 
Notice that we are not yet in a position to raise or lower a suffix, or to define 
an invariant such as *G, because we have no Gur If we wish at this stage to 
form an invariant of a four-dimensional region we must take its “ generalised 
volume” 

[][[ el Gneit ar, 
which is accordingly more elementary than the other regional invariants enumerated in § 88, 

It may be asked whether there is any other way of obtaining tensors, besides the consideration of parallel displacement round a closed circuit, I think not; because unless our succession of displacements takes us back to the starting-point, we are left with initial and final displacements at a distance, between which no comparability exists. 
The equation (92°55) does not prove immediately that F,, is the curl of a vector, because, notwithstanding the notation, D, is not usually a vector. But since F,, is a tensor 

, Or, On, 
oF ap >= 2B uy Oar,’ Bap’ 

_ Ol, oz, dx, OT, On, Ox, =a sso Oe ue ET 

0 On, Q ez, = ag (Toe?) ~ aap (To). 
Now by (28°12) T,0x,/dx_’ is a vector. Let us denote it by 2x,’. Then 

ro On” Oxe" . ap = Bag’ ~ Ba? * 

Thus F',g is actually the curl of a vector «a, though that vector is not neces- sarily equal to [’,’ in all systems of coordinates, The general solution of 1 (ze ate) Brea’ _ Bxeg” oo 2 \ dee ~ B,7) = Bag’ ~ Bene 
© 

7 dQ 
» 

1s : Ty’ = 2e,/ + Dag Tete eee eeeteeees (92:7), 
and since 0 need not be an invariant, I,’ is not a vector, 

93. Introduction of a metric. 
Up to this point the interval ds between two points has not appeared in our theory. It will be remembered that the interval is the length of the cor- responding displacement, and we have to consider. how a length (an invariant) is to be assigned to a displacement dz, (a contravariant in-vector). In this section we shall assign it by the convention 

ds? = 9,,d2,dx, tittteeereeeeeeseeeece (OST1), Here g,, must be a tensor, in order that the interval may be an invariant; but the tensor is chosen by us arbitrarily.
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The adoption of a particular tensor 7,, is equivalent to assigning a particular 

gauge-system—a system by which a unique measure is assigned to the interval 

between every two points. In Weyl’s theory, a gauge-system is partly physical. 

and partly conventional; lengths in different directions but at the same point 

are supposed to be compared by experimental (optical) methods; but lengths 

at different points are not supposed to be comparable by physical methods 

(transfer of clocks and rods) and the unit of length at each point is laid down 

by a convention. I think that this hybrid definition of length is undesirable, 

and that length should be treated as a purely conventional or else a purely 

physical conception. In the present section we treat it as a purely con- 

ventional invariant whose properties we wish to discuss, so that length as here 

’ defined is not anything which has to be consistent with ordinary physical tests. 

Later on we shall consider how g,, must be chosen in order that conventional 

length may obey the recognised physical tests and thereby become physical 

length; but at present the tensor g,, is unrestricted. 

Without any loss of generality, we may take g,, to be a symmetrical tensor, 

since any antisymmetrical part would drop out on multiplication by dz,da, 

and would be meaningless in (93°11). 

Let J be the length of a displacement A*, so that 

1? = py AM AY cocsceesessesesuesesene, (93:12). 
Move A* by parallel displacement through dz,, then 

OF uv ,oAt oA” 
d(l)= (ze AMA + gud? T+ Gur At =) diay 

= (“ge At Ar —g,,A°T#,A*— Ju AMD 2, A®) dity by (911) 

C oa = (#e — gor T 2, — GuaV'r) At AY dag. . 

by interchanging dummy suffixes, a , 

In conformity with the usual rule for lowering suffixes, we write’ 

Dou,y = Jav ous 

» so that d= (ae Done Denn) APA? (dB) vescsesceses (93:2). 

But d(J*), the difference of two invariants, is an invariant. Hence the 

quantity in the bracket is a covariant tensor of the third rank which is evi- 

dently symmetrical in » and », We denote it by 2K,,,-. Thus 

  

  

2Kune= ses Tepe Dona vessesteeeeeeeeee (93°3). 

Similarly Kyo = Agee ~Tyye— Toone 

  2K ven = On —Ture — Tyee
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Adding these and subtracting (93:3) we have 

1 o 0 va a v 
Kyo + Kyis,p — Kyo = 5 ue 4 de _ pes) - Du, .».(93°4), . Ok, Oke 

Let * Suno= Kuno Kyo Kray cesvesessseesecaee (98°5). 
Then (93:4) becomes Dw,o= [uv, o] + Suro; 
‘so that, raising the suffix, Do = {uv, of Fly cecccceceeesceeceeeeeees (936). 
If Kyv,¢ has the particular form 9, Xe, 

Shiv = Jur? — Oi ky — Goku, 
so that (93°6) reduces to (86'2) with I'Z, = *{uv, o}. 

Thus Weyl’s geometry is a particular case of our general geometry of 
parallel displacement. His restriction Kye = Juv Xo iS equivalent to that already 
explained in § 84. 

94, Evaluation of the fundamental in-tensors. 
In (9241) *Bi,, is expressed in terms of the non-tensor quantities P7,. 

By means of (93°6) it can now be expressed in terms of tensors g,, and Si. 
Making the substitution the result is 

e a 0 
*Bive = - On, {uv, e} tas tuo, ¢} + {uc, a} {va, e} _ {uv, a} {oa, e} 

~ se Sin tg Stat St, {00, | + She (uc, a} — SF, oa, ] — 85, fun a} 
| + SicSa— Sty Sie. SO 

The first four terms give the ordinary Riemann-Christoffel tensor (34-4). The next six terms reduce to 

; / 7 (S pve + (S pov 

where the final suffix represents ordinary covariant differentiation (not in- covariant differentiation), viz. by (80°4), 

cy 2 ge © fue. al S “ (Side = a Siw — {n0, a} Ss, — (ve, a} Sta + {acy e} Si. 

Hence * Bie = Bie — (Sju)ot Shay + Ste Sin — S28 e cesee, (941). 
This form makes its tensor-property obvious, whereas the form (92°41) made its “in-” property obvious. _ . 

“We next contract by setting «=o and write 

Sha = 2p ceeeeeee vote eteeceseeeeeeeeens (94-2), 
obtaining * Ga = Cav — (St,)u+ tips + Sp S2, — Dea Sy ceesveree (943), 

‘Again, multiplying by g#, 
*@ = G+ Q05 + Quo + dxdt + SIPSY g cesccecesesceee (944), | 

where we have set —- BE pec 2A we. set eeeeneeseenseeia (9475). 
The difference between (94°5) and (94:2) is that 2, is formed by equating the two symmetrical suffixes, and «, by equating one of the symmetrical
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suffixes with the third suffix in the S-tensor. «, and 2, are, of course, entirely 

different vectors. ; 

The only term on the right of (94°3) which is not symmetrical in yw and » 

is Qe,» We write 

Ruv= Gav + uy + Kru) — (S3y)a— 2a Sey + Siig Soa veers (9461), 

Pry = Ky Kap cevecccneeccensenencceeneceeeesnenaneeereneeeees (94°62), 

so that Guy Rav t Buy cccccccsccssesceeceeens (94°63), 

and R,, and F,, are respectively its symmetrical and antisymmetrical parts. 

Evidently R,, and F,, will both be in-tensors. 

We can also set *Buvoe = Ryvoe + Puvoes 

where R is antisymmetrical and F is symmetrical in » and «. We find that 

F, puvoe (Kye, ve 7 (Kye, ov» 

a result which is of interest in connection with the discussion of § 84. But 

Ryrvee 20d Fyrvoe ate Not in-tensors, since the g,, are needed to lower-the suffix e. 

By (92°5) and (93°6) 

Ty, = Wha = {uo a} + Spa 

Q — oh (log V — G) + ley ereererereerene (94°7). 

By comparison with (92°7) we see that the indeterminate function 0, is 

log V — g, which is not an invariant. 

95. The natural gauge of the world. 

We now introduce the natural gauge of the world. The tensor g,,, which 

has hitherto been arbitrary, must be chosen so that the lengths of displace- 

ments agree with the lengths determined by measurements made with material 

and optical appliances. Any apparatus used to measure the world is itself part 

of the world, so that the natural gauge represents the world as self-gauging. 

This can only mean that the tensor gp, which defines the natural gauge is 

not extraneous, but is a tensor already contained in the world-geometry. Only 

one such tensor of the second rank has been found, viz. *G,,. Hence natural 

length is given b 
° 3 7 ° P= *G,,A"A”. 

The antisymmetrical part drops out, giving 

. P= Ry Ata”. 

Accordingly by (93°12) we must take 

. NGuv = Ryuy ceesececercesseeeessneeeeeeees (95°1), 

introducing a universal constant , in order to remain free to use the centi- 

metre instead of the natural unit of length whose ratio to familiar standards 

is unknown. : 

The manner in which the tensor R,, is transferred via material structure 

to the measurements made with material structure, has been discussed in
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§ 66. We have to replace the tensor G,, used in that section by its more 
general form R,,, since G,, is not an in-tensor and has no definite value . 
until after the gauging-equation (95°1) has been laid down. The gist of the 
argument is as follows— ; 

First adopt any arbitrary conventional gauge which has no relation to 
physical measures. Let the displacement A# represent the radius in a given 
direction of some specified unit of material structure—e.g. an average electron, 
an average oxygen atom, a drop of water containing 10” molecules at tempera- 
ture of maximum density. A* is determined by laws which are in the main 
unknown to us. But just as we can often determine the results of unknown 
physical laws by the method of dimensions, after surveying the physical 
constants which can enter into the results, so we can determine the condition 

- satisfied by A* by surveying the world-tensors at our disposal. This method 
indicates that the condition is 

R,,A"A” =constant ......... desaevevaces (95:11). 
If now we begin to make measures of the world, using the radius of such a 
material structure as unit, we are thereby adopting a gauge-system in which 
the length J of the radius is unity, i.e. - 
co LSP ag Ata” ooccccccccccccccccccceee (95°12), 

By comparing (95°11) and (95°12) it follows that’ g,, must be a constant 
multiple of 2,,; accordingly we obtain (95°1)*. . Oo 

Besides making comparisons with material units, we can also compare the 
lengths of displacements by optical devices. We must show that these com- 
parisons will also fit into the gauge-system (95'1). The light-pulse diverging 
from a point of space-time occupies a unique conical locus, This locus exists 
independently of gauge and coordinate systems, and there must therefore be 
an in-tensor equation defining it. The only in-tensor equation giving a cone 
of the second degree is © 

; Ry, da,dz,=0...... weet ese eeeeseeeeeeees (95°21). 
Comparing this with Einstein’s formula for the light-cone ° 

, AS? = Yuya dy =O ecerecceleseeccecceeees (95°22). 
We see that again Ruy =DAQuv - cerceeeresceccesereseeeee (D523). 

Note however that the optical comparison is less stringent than the 
material comparison; because (95:21) and (95°22) would be consistent if > 
were a function of position, whereas the material comparisons require that it 
shall be a universal constant. That is why Weyl’s theory of gauge-transforma- 
tion occupies a position intermediate between pure mathematics and physics. 
He admits the physical comparison of length by optical methods, so that his 
gauge-transformations are limited to those which do not infringe (95:23); but 

* Note that the isotropy of the material unit or of the electron is not necessarily a symmetry of form but an independence of orientation. Thus a metre-rule has the required isotropy because it has (conventionally) the same length however it is orientated.
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he does not recognise physical comparison of length by material transfer, and 
consequently he takes A to be a function fixed by arbitrary convention and 
not necessarily a constant. There is thus both a physical and a conventional 
element in his “length.” 

_ «A hybrid gauge, even if illogical, may be useful in some problems, par- 

ticularly if we are describing the electromagnetic field without reference to 
matter, or preparatory to the introduction of matter. Even without matter 

‘the electromagnetic field is self-gauging to the extent of (95°28), » being a 
function of position; so that we can gauge our tensors to this extent without 
tackling the problem.of matter. Many of Weyl’s in-tensors and in-invariants 
are not invariant for the unlimited gauge-transformations of the generalised 
theory, but they become determinate if optical gauging alone is employed}; 
whereas the ordinary invariant or tensor is only determinate in virtue of 
relations to material standards. In particular §*” is not a complete in-tensor- 
density, but it has a self-contained absolute meaning, because it measures the 
electromagnetic field and at the same time electromagnetic fields (light-waves) 
suffice to gauge it. It may be contrasted with F#” which can only be gauged 
by material standards; #” has an absolute meaning, but the meaning is not 
self-contained. For this reason problems will arise for which Weyl’s more 
limited gauge-transformations are specially appropriate; and we regard the 
generalised theory as supplementing without superseding his theory. 

Adopting the natural gauge of the world, we describe its condition by 

two tensors g,,and Kf,. If the latter vanishes we recognise nothing but g,,, 

ie. pure metric. Now metric is the one characteristic of space. I refer, of 
course, to the conception of space in physics and in everyday life—the mathe- 

matician can attribute to his space whatever properties he wishes. If Ki, does 
not vanish, then there is something else present not recognised as a property 
of pure space; it must therefore be attributed to a “thing*.” Thus if there 

is no “thing” present, ie. if space is quite empty, Kj,=0, and by (94°61) R,, 

reduces to G,,. In empty space the gauging-equation becomes accordingly 

Gav = AGpy sevcerecesecccsensseecesccnees (95:3), 

which is the law of gravitation (87°4). The gauging-equation is an alias of the 
law of gravitation. 

We see by (66°2) that the natural unit of length (X=1) is 1/V3 3 times the 
radius of curvature of the world in any direction in empty space. We do not 
know its value, but it must obviously be very large. 

One reservation must be made with regard to the definition of empty 

space by the condition Kf,=0. It is possible that we do not recognise K%, by . 
any physical experiment, but only certain combinations of its components. In 

that case definite values of KZ, would not be recognised as constituting a 

* An electromagnetic field is a ‘‘thing”; a gravitational field is not, Einstein’s theory having 

shown that it is nothing more than the manifestation of the metric,
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“thing,” if the recognisable combinations of its components vanished ; just as 
finite values of x, do not constitute an electromagnetic field, if the curl 
vanishes. This does not affect the validity of (95°83), because any breach of 
this equation is capable of being recognised by physical experiment, and 
therefore would be brought about by a combination of components of K%, which 
had a physical significance. 

' 96. The principle of identification. 

In §§ 91-93 we have developed a pure geometry, which is intended to be de- 
scriptive of the relation-structure of the world. The relation-structure presents 
itself in our experience as a physical world consisting of space, time and things. 
The transition from the geometrical description to the physical description 
can only be made by identifying the tensors which measure physical quanti- 
ties with tensors occurring in the pure geometry; and we must proceed by 
inquiring: first what experimental properties the physical tensor possesses, 
and then seeking a geometrical tensor which possesses these properties by 
virtue of mathematical identities. 

If we éan do this completely, we shall have constructed out of the primitive 
relation-structure a world of entities which behave in the same way and obey 
the same laws as the quantities recognised in physical experiments. Physical 
theory can scarcely go further than this. How the mind has cognisance of 
these quantities, and how it has woven them into its vivid picture of a per- 
ceptual world, is a problem of psychology rather than of physics. 

The first step in our transition from mathematics to physics is the identi- 
fication of the geometrical tensor R,, with the physical tensor g,, giving the 
metric of physical space and time. Since the metric is the only property of 
space and time recognised in physics, we may be said to have identified space 
and time in terms of relation-structure. We have next to identify “things,” 
and the physical description of “ things” falls under three heads, 

(1) The energy-tensor 7% comprises the energy momentum and stress in 
unit volume. This has the property of conservation (7,)-=0, which enables 
us to make the identification 

— 807 = GL-4GE (G2) veeccceccesseees (96-1) 
satisfying the condition of conservation identically. Here X might be any 
constant; but.if we add the usual convention that the zero-condition from 
which energy, momentum and stress are to be reckoned is that of empty space 
(not containing electromagnetic fields), we obtain the condition for empty 
space by equating (961) to zero, viz. 

Gap = AGuvs 

‘so that A must be the same constant as in (95°83).
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(2) The electromagnetic force- tensor F,, has the property that it fulfils 

the first half of f Maxwell's equations 
OF wy , OF ve , OF on 
O2_' + O25 + On, . 

This will be an identity if F,, is the curl of any covariant vector; we 
accordingly identify it with the in-tensor already called F,, in anticipation, 
which we have seen is the curl of a vector «, (94°62). 

(8) The electric charge-and-current vector J* has the property of con- 
servation of electric charge, viz. 

      

Jt= 

The divergence of J# will vanish sdentieally if J isitself the divergence ofany 
antisymmetrical contravariant tensor. Accordingly we make the identification 

TH eee cccleeeeeees fs teeeeeeees (96:3), 

a formula which satisfies the remaining half of Maxwell’s equations. 
The correctness of these identifications should be checked by examining 

whether the physical tensors thus defined have all the properties which 

experiment requires us to attribute to them. There is, however, only one 

further general physical law, which is not implicit in these definitions, viz. the 

law of mechanical force of an electromagnetic field. We can only show in an 
imperfect way that our tensors will conform to this law, because a complete 

proof would require more knowledge as to the structure of an electron; but 

the discussion of § 80 shows that the law follows in a very plausible way. 

In identifying “things” we have not limited ourselves to in-tensors, 

because the “things” discussed in physics are in physical-space and time and 

therefore presuppose the natural gauge-system. The laws of conservation and 

Maxwell’s equations, which we have used for identifying “things,” would not 

‘hold true in an arbitrary gauge-system. 
No doubt alternative identifications would be conceivable. For example, 

F,, might be identified with the curl of A, instead of the curl of «,. That 

would leave the fundamental in-tensor apparently doing nothing to justify its 

existence. We have chosen the most obvious identifications, and it seems 

reasonable to adhere to them, unless a crucial test can be devised which shows 

them to be untenable. In any case, with the material at our disposal the 

number of possible identifications is very limited. 

97. The bifurcation of geometry and electrodynamics. 

The fundamental in-tensor *G,, breaks up into a symmetrical part R,, 

and an antisymmetrical part F,,. The former is Ag,,, or if the natural unit 

of length (A= 1) is used, it is simply g,,. We have then 

*Gu= = Jur t Puvs 

t The curl of A,,is not an in-tensor, but there is no obvious reason why an in-tensor should 

be required. If magnetic flux were measured in practice by comparison with ‘that of a magneton 

transferred from point to point, as a length is measured by transfer of a scale, then an in- tensor 

would be needed. But that is not the actual procedure. ©
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showing at once how the field or aether contains two characteristics, the 
‘ gravitational potential (or the metric) and the electromagnetic force. These 
are connected in the most-simple possible way in the tensor descriptive of 
underlying relation-structure ; and we see in a general way the reason for this 
inevitable bifurcation into symmetrical and antisymmetrical—geometrical- 
mechanical and electromagnetic—characteristics. 

Einstein approaches these two tensors from the physical-side, having 
recognised their existence in observational phenomena. We here approach 
them from the deductive side endeavouring to show as completely as possible 
that they must exist for almost any kind of underlying structure. We confirm 
his assumption that the interval ds’ is an absolute quantity, for it is our in- 
invariant R,,dz,d2,; we further confirm the well-known property of F,, that 
it is the curl of a vector. 

We not only justify the assumption that natural geometry is Riemannian | 
- geometry and not the ultra-Riemannian geometry of Weyl, but we can show 

a reason why the quadratic formula for the interval is necessary. The only 
simple absolute quantity relating to two points is 

: *G,,dx,da,. 

To obtain another in-invariant we should have to proceed to an expression like 
, * Bove * Bx pdx, dx,dax,dax,. 

Although the latter quartic expression does theoretically express some abso- 
lute property associated with the two points, it can scarcely be expected that 
we shall come across it in physical exploration of the world so immediately as 
the former quadratic expression. ; 

It is the new insight gained on these points which is the chief advantage 
of the generalised theory. , 

98. General relation-structure. 

We proceed to examine more minutely the conceptions on which the 
fundamental axioms of parallel displacement and affine geometry depend. 

The fundamental basis of all things must presumably have structure and 
substance. We cannot describe substance; we can only give a name to it, 
Any attempt to do more than give a name leads at once to an attribution of 
structure. But structure can be described to some extent; and when reduced 
to ultimate terms it appears to resolve itself into a complex of relations. And 
further these relations cannot be entirely devoid of comparability; for if 

_ nothing in the world is comparable with anything else, all parts of it are alike 
in their unlikeness, and there cannot be even the rudiments of a structure, 

The axiom of parallel displacement is the expression of this comparability, 
and the comparability postulated seems to be almost the minimum conceiy- 
able. Only relations which are close together, i.e. interlocked in the relation- 
structure, are supposed to be comparable, and the conception of equivalence 
is applied only to one type of relation. This comparable relation is called
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displacement. By representing this relation graphically we obtain the idea of 
location in space; the reason why it is natural for us to represent this par- 
ticular relation graphically does not fall within the scope of physics. 

Thus our axiom of parallel displacement is the geometrical garb of a 
principle which may be called “the comparability of proximate relations.” 

There is a certain hiatus in the arguments of the relativity theory which 
has never been thoroughly explored. We refer all phenomena to a system of 
coordinates; but do not explain how a system of coordinates (a method of 
numbering events for identification) is to be found in the first instance. It 
may be asked, What does it matter how it is found, since the coordinate- 

system fortunately is entirely arbitrary in the relativity theory? But the 
arbitrariness of the coordinate-system is limited. We may apply any con- 
tinuous transformation ; but our theory does not contemplate a discontinuous 
transformation of coordinates, such as would correspond to a re-shuffling of 
the points of the continuum. There is something corresponding to an order of 
enumeration of the points which we desire to preserve, when we limit the 
changes of coordinates to continuous transformations. 

It seems clear that this order which we feel it necessary to preserve must 
be a structural order of .the points, i.e. an order determined by their mutual 
relations in the world-structure. Otherwise the tensors which represent 
structural features, and have therefore a possible physical significance, will 
become discontinuous with respect to the coordinate description of the world. 
So far as I know the only attempt to derive a coordinate order from a postu- 
lated structural relation is that of Robb*; this appears to be successful in the 

case of the “special” theory of relativity, but the investigation is very 

laborious. In the general theory it is difficult to discern any method of 
attacking the problem. It is by no means obvious that the interlocking of 
relations would necessarily be such as to determine an order reducible to the 
kind of order presumed in coordinate enumeration. I can throw no light on:- 
this question. It is necessary to admit that there is something of a jump 
from the recognition of a comparable relation called displacement to the 
assumption that the ordering of points by this relation is homologous with 
the ordering postulated when the displacement is represented graphically by 

a coordinate difference dz,. 
The hiatus probably indicates something more than a temporary weakness 

of the rigorous deduction. It means that space and time are only approximate 
conceptions, which must ultimately give way to a more general conception of 
the ordering of events in nature not expressible in terms of a fourfold coordi- 

nate-system. It is in this direction that some physicists hope to find a solution 
of the contradictions of the quantum theory. It is a fallacy to think that the 
conception of location in space-time based on the observation of large-scale 

* The Absolute Relations of Time and Space (Camb. Univ. Press). He uses the relation of 

‘before and after.” 

E. 15
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phenomena can be applied unmodified to the happenings which involve only 
a small number of quanta. Assuming that this is the right solution it is use- 
less to look for any means of introducing quantum phenomena into the later 
formulae of our theory; these phenomena have been excluded at the outset 
by the adoption of a coordinate frame of reference. 

The relation of displacement between point-events and the relation of 
“equivalence” between displacements form parts of one idea, which are only 
separated for convenience of mathematical manipulation. That the relation of 
displacement between A and B amounts to such-and-such a quantity conveys 
no absolute meaning; but that the relation of displacement between A and B 
is “equivalent” to the relation of displacement between C and D is (or at 
any rate may be) an absolute assertion. Thus four points is the minimum 
number for which an assertion of absolute structural relation can be made. 
The ultimate elements of structure are thus four-point elements. By adopting 
the condition of affine geometry (91:3), I have limited the possible assertion 
with regard to a four-point element to the statement that the four points do, 
or do not, form a parallelogram. The defence of affine geometry thus rests on 
the not unplausible view that four-point elements are recognised to be differ- 
entiated from one another by a single character, viz. that they are or are not 
of a particular kind which is conventionally named parallelogramical. Then 
the analysis of the parallelogram property into a double equivalence of AB to 
CD and AC to BD, is merely a definition of what is meant by the equivalence 
of displacements. ; . 

I do not lay overmuch stress on this justification of affine geometry. It ¢ 
may well happen that four-point elements are differentiated by what might 
be called trapezoidal characters in which the pairs of sides are not commutable; 
so that we could distinguish an element ABDC trapezoidal with respect to 
AB, CD from one trapezoidal with respect to AC, BD. I am quite prepared 
to believe that the affine condition may not always be fulfilled—giving rise to 
new phenomena not included in this theory. But it is probably best in aiming 
at the widest generality to make the generalisation in successive steps, and 
explore each step before ascending to the next. 

In reference to the difficulties encountered in the most general description 
of relation-structure, the possibility may be borne in mind that in physics we 
have not to deal with individual relations but with statistical averages; and 
the simplifications adopted may have become possible because of the averaging, 

99. The tensor *B¥,,. . 
Besides furnishing the two tensors Juw and F,, of which Einstein has 

made good use, our investigation has dragged up from below a certain 
amount of apparently useless lumber. We have obtained the full tensor 
*Bie Which has not been used except in the contracted form—that is to say 
certain components have been ignored entirely, and others have not been
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considered individually but as sums. Until the problem of electron-structure 
is more advanced it is premature to reject finally any material which could 
conceivably be relevant; although at present there is no special reason for 
anticipating that the full tensor will be helpful in constructing electrons. 

Accordingly in the present state of knowledge the tensor *Bive cannot - 
"be considered to be a physical quantity; it contains a physical quantity 
 *G,,. Two states of the w orld which are described by different *Bt,, but the 
same *G,, are so far as we know identical states; just as two configurations 

of events described by different coordinates but the same intervals are 

identical configurations. If this is so, the IY, must be capable of other trans- 
formations besides coordinate transformations without altering anything in 
the physical condition of the world. | 

Correspondingly the tensor Ky, can take any one of an infinite series of 
values without altering the physical state of the world. It would perhaps be 

- possible to show that among these values is g,,«’, which gives Weyl’s geo- 
metry; but Iam not sure that it necessarily follows. It has been suggested 
that the occurrence of non-physical quantities in the present theory is a 
drawback, and that Weyl’s geometry which contains precisely the observed 
number of “degrees of freedom” of the world has the advantage. For some 
purposes that may be so, but not for the problems which we are now con- 
sidering. In order to discuss why the structure of the world is such that the 
observed phenomena appear, we must necessarily compare it with other 
‘structures of a more general type; that involves the consideration of “non- 
physical” quantities which exist in the hypothetical comparison-worlds, but 
are not of a physical nature because they do not exist in the actual world. 
If we refuse to consider any condition which is conceivable but not actual, 

we cannot account for the actual; we can only prescribe it dogmatically. 

As an illustration of what is gained by the broader standpoint, we may 

consider the question why the field is described by exactly 14 potentials. 

Our former explanation-attributed this to the occurrence of 14 variables in 

the most general type of geometry. We now see that this is fallacious and 
that a natural.generalisation of Riemannian geometry admits 40 variables ;_ 
and no doubt the number could be extended. The real reason for the 14 
potentials is because, even admitting a geometry with 40 variables, the 
fundamental in-tensor. of the second ‘rank has 14 variables; and it is the 

in-tensor (a measure of the physical state of the world) not the world-geometry 

~ (an arbitrary graphical representation of it) which determines the phenomena. 
The “lumber” which we have found can do no harm. If it does not affect 

the structure of electrons or quanta, then we cannot be aware of it because 

we are unprovided with appliances for detecting it; if it does affect their 

structure then it is just as well:to have discovered it. The important thing 
is to keep it out of problems to which it is irrelevant, and this is easy since 

15—2 

“



228 - THE TENSOR * Bie CH. VII 

*Gy» extracts the gold from the dross. It is quite unnecessary to specialise 
the possible relation-structure of the world in such a way that the useless 
variables have the fixed value zero; that loses sight of the interesting result 
that the world will go on just the same if they are not zero. 

We see that two points of view may be taken— 
(1) Only those things emist (in the physical meaning of the word) which. 

could be detected by conceivable experiments. 
(2) We are only aware of a selection of the things which ewist (in an 

extended meaning of the word), the selection being determined by the nature 
of the apparatus available for exploring nature. 

Both principles are valuable in their respective spheres. In the earlier 
part of this book the first has been specially useful in purging physics from 
metaphysical conceptions. But when we ‘are inquiring why the structure of 
the world is such that just g,, and «, appear and nothing else, we cannot 
ignore the fact that no structure of the world could make anything else 
appear if we had no cognizance of the appliances necessary for detecting it. 
Therefore there is no need to insert, and puzzle over the cause of, special 
limitations on the world-structure, intended to eliminate everything which 
physics is unable to determine. The world-structure is clearly not the place 
in which the limitations arise. 

100. Dynamical consequences of the general properties of 
world-invariants. Lo. 

We shall apply the method of § 61 to world-invariants containing the 
electromagnetic variables. Let § be a scalar-density which is a function of 
Juv» Fy, x, and their derivatives up to any order, so that fora given region 

fdr is an invariant. 
It. would have been possible to express F,,,in terms of the derivatives of Ky3 

but in this investigation we keep it separate, because special attention will 
be directed to the case in which & does not contain the «x, themselves but 
only their curl, so that it depends on g,, and F,, only. 

By partial integration we obtain as in § 61 

  

Sf Kde =f (PS Gun — He SF yy + QH Sey) dr eseesees (100°1), 
for variations which vanish at the boundary of thé region. Here. 

»— NK nK nK v= ev =e = U Pe figw’ nF, fle (1002), 
and P+ is a symmetrical tensor, H#” an antisymmetrical tensor. 

: suv (O(8k,) 8 (8x,) 7, v = sey (A, We have HF, = He ( ae ). 

= 2H" @ (8xy) 

5 ORY 

=— Zafer Ok   

Ox,
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rejecting a complete differential, 

=—-259"S«, — by (51°52). 
Hence ...... 

Sf Rdr =f (B" Squs + (2H2" + DH) 8x}dr cece (100°3).: 
Now suppose that the &9,, and 8x, arise solely from arbitrary variations 

&x, of the coordinate-system in accordance with the laws of transformation 

of tensors and vectors. The invariant will not be affected, so that its variation 
vanishes, By the same process as in obtaining (61°3) we find that the change 
of S«,, for a comparison of points having the same coordinates x, in both the 
original and varied systems, is , , 

0 (824) OKn 
a, + ar, 824. — bt, = Ka     

Hence 

— (Ge + 2G) Be, = FE (Oe 4 2607) — gh fe De +268") Bre . (0% ve 

rejecting a complete differential. Since 0D’/dx, = 0 (73°76), this becomes 

{Fue (O* + 25%") — aD. | 
Using the previous reduction for 69,, (61°4), our equation (100°3) reduces to 

O=f (28%, — Pua (OQ + 250") + ea Og} Sxadr «2... (100-41) 

for all arbitrary variations 8, which vanish at the boundary of the région. 

Accordingly we must have identically’ : 

BL = Fuel” + Fiat — bea Oh 
or, dividing by V—Q, and changing dummy suffixes, 

Pi = — Pao l —4 (Fur Q? + ei Qe) veseecereees (100:42). 

First consider the case when St is a function of g,, and F,, only, so that 

Qe =0. The equation oo 

Pty — Buy He cesses sseseees(100°43) 

at once suggests-the equations of the mechanical force of an electromagnetic 

field . 
Mi =~ hy=— FuyJ* = — FF. 

It has already become plain that anything recognised in. physics as an 

energy-tensor must be of the nature of a Hamiltonian derivative of some 

invariant with’ respect to g,»; and the property of conservation has been 

shown ‘to depend on this fact. We now see that the general theory of in- 

variants also predicts the type of the reaction of any such derived tensor to the 

electromagnetic field, viz. that its conservation is disturbed by a pondero- 

motive force of the type F.,H¢’.



230 GENERAL PROPERTIES OF WORLD-INVARIANTS CH. VII. 

If we identify P;, with the material energy-tensor, Hf” must be identified 
with the charge-and- -current vector}, so that 

Jt = WY: oe beeteeceesscnecescnees (100°44), 

which is the general equation given in (822). It follows without any further 
specialisation that electric charge must be conserved (Ji: = 0). 

‘The foregoing investigation shows that the antisymmetric part of the 
principal world-tensor will manifest itself in our experience by producing 
the effects of a force. This force will act on a certain stream-vector (in 
the manner that electromagnetic force acts on a charge and current); and 

further this stream-vector represents the flow of something permanently con- 
served. The existence of electricity and the qualitative nature of electrical 
phenomena are thus predicted. 

In considering the results of substituting a particular function for K, it 

has to be ‘remembered, that the equation (100°42) is an identity. We shall 
not obtain from it any fresh law connecting g,, and x,. The fina] result after | 
making the substitutions will probably be quite puerile-and unworthy of the 
powerful general method employed. The interest lies not in the identity 
itself but in the general process of which it is the result. We have seen 

‘reason to believe that the process of Hamiltonian differentiation is actually 

the process of creation of the perceptual world around us, so that in this 
investigation we are discovering the laws of physics by examining the mode 
in which the physical world is created. The identities expressing these 
laws may be trivial from the mathematical point of view when separated 
from the context; but the present mode of derivation gives the clue to their 
significance in our experience as fundamental laws of natured. 

To agree with Maxwell’s theory it is necessary to have Hty=J¥", Ac- 
cordingly by (100-2) the invariant K should contain the term —4/* F,,. 
The only natural way in which this can be combined linearly with other 
terms not containing Fu) is in one of the invariants 3*G,,,*@" or — EG, v¥ Ge, 
We take 

K= "6,6" 

‘ =} (Ruy + Fav) (Rv + iv) 

=4 (Ry Re” — Buy BBY) ooeccccccseeeeees reeee.(100°5) 

by the antisymmetric properties of F,,. 
The quantity R,, can be expressed as a function of the variables in two 

ways, either by the gauging-equation 

Ruy = AGuv . 

' + This definition of electric charge through the mechanical effects experienced by charged 
bodies corresponds exactly to the definition employed i in practice. Our previous definition of it 

as FP” corresponded to a measure of the strength of the singularity in the electromagnetic field. 

} The definitive development of the theory ends at this point. From here to the end of § 102 
we discuss certain possibilities which may be on the track of further progress; but there is no 

certain guidance, and it may be suspected that the right clue is still lacking.
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or by the general expressions (87°5) and (94°61). If the first form is adopted 
we obtain an identity, which, however, is clearly not the desired relation of 

energy. . 
If we adopt the more general expression some care is required. Pre- 

sumably & should be an in-invariant-density if it has the fundamental 
importance supposed. As written it is not formally in-invariant in our 
gencralised theory though it isin Weyl’s theory. We can make it in-invariant 

by writing R,,Re” V—g in the form . 

g'* 9°? RurRap V— 9, 

where the g*” are to have the values for the natural gauge, but in the in- 
tensor J, the general values for any gauge may be used. The general theory 
becomes highly complicated, and we shall content ourselves with the partially 
generalised expression in Weyl’s theory, which will sufficiently illustrate the 
procedure. In this case Ry,=Aguy, but > is a variable function of position. 
Accordingly R,, Re” = 442= 4*G, so that 

SHE HG 4B BO) V OG cececeecceetseees (100°6). 

Comparing with (90°1) we see that & is equivalent to the action adopted by 

Weyl. 
This appears to throw light on the meaning of the combination of *G? 

with F,,F#* which we have recognised in (90°1) as having an important 

significance. It is the. degenerate form in Weyl’s gauge of the natural com- 

bination *G,,*G’*. The alternation of the suffixes is primarily adopted as a 

trick to obtain the required sign, but is perhaps justifiable. 

If this view of the origin of (90°1) is correct, the constant a must be 

equal to 4. Accordingly 8B =1/2a, and by (90°51) the whole energy-tensor 

and the electromagnetic energy-tensor are reduced to the same units in the 

expressions --- eters 
Eev, 827 NT#Y oo. ccceeeceeee ence eceneees (100°7). 

The numerical results obtainable from this conclusion will be discussed in 

102. . 

In the discussion of § 90 it was assumed that Ps" (=NK/Ng,,) vanished. 

I do not think there is any good reason for introducing an arbitrary action- 

principle of this kind, and it seems more likely that P#» will be a non- 

vanishing energy-tensor. oo, , 

This seems to leave a superfluity of energy-tensors, because owing to the 

non-vanishing coefficient Q* we have the term («*«” — 3g" xax*) in (90°51) 

which has to play some réle. In § 90 this was supposed to be the material 

energy-tensor, but I am inclined to think that it has another interpretation. 

In order to liberate material energy we must relax the binding forces of the 

electrons, allowing them to expand. Suppose that we make a small virtual 

change of this kind. In addition to the material energy liberated by the 

process there will be another consequential change in the energy of the
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region. The electron furnishes the standard of length, so that all the gravi- 
tational energy will now have to be re-gauged. It seems likely that the 
function of the term («#«”—49""«,«*) is to provide for this change. If so, 
nothing hinders us from identifying P#» with the true material energy- 
tensor. 

101. The generalised volume. 

Admitting that *G,, is the building-material with which we have to con- 
struct the physical world, let us examine what are the simplest invariants 
that can be formed from it. The meaning of “simple” is ambiguous, and 
depends to some extent on our outlook. I take the order of simplicity to be 
the order in which the quantities appear in building the physical world from 
the material *G,,. Before introducing the process of gauging by which we 
obtain the g,,, and later (by a rather intricate use of determinants) the g*”, 
we can form in-invariants belonging respectively to a one-dimensional, a two- 
dimensional and a four-dimensional domain. . 

*(1) Fora line-element (dx), the simplest in-invariant is 
*G, dx} (day sttteeseeeeseeeceeesees (LOLIL), 

which appears physically as the square of the length. , 
(2) For a surface-element dS#’, the simplest in-invariant is 

* Grd SO. oe eceeesssecsscvececeeeenes (101°12), 
which appears physically as the flux of electromagnetic force. It may be 
remarked that this invariant, although formally pertaining to the surface- 
element, is actually a property of the bounding circuit only. 

(3) For a volume-element dr, the simplest in-invariant is 
VeV(—| "Gur [dt ceccsescesseessess .--(101-18), 

which has been called. the -generalised volume, but has not yet received a physical interpretation. 
We shall first calculate |*G,,| for Galilean coordinates, Since 

*Gur = Gur + Puy 

we have on inserting the Galilean values 

I*Guwl=|—-% -y BB —-X 
Y «-N -a -—Y 
-B a -r -Z 

X “YY Z x a 
=— (MAA (oF + Bt 4 2 — X2— Y?— 2) (aX +BY +yZy} 
Bo (101:2). 

The relation of the absolute unit of electromagnetic force (which is here being used) to the practical unit is not yet known, but it seems likely that the fields 

‘
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used in laboratory experiments correspond to small values of Ft. If this is 
so we may neglect the fourth powers of F,, and obtain approximately 

V=M =| *Gyrl) dr = (+3 (08 + BP +y— X2— Y?— Z4)} dr 
= 3+ 1LF,,F*") dr by (77°3). 

Since V is an invariant we can at once write down the result for any other 
coordinate-system, viz. 

Va(MFL Fy FOr) V = G dre cccssseceeceenets :.(101°31), 

or in the natural gauge 2,,=Ag,», this can be written 

V=1(R,, Re + F,, Fe) V —gdr 

= 4 Gy *GHY VAG dT ceccesteesreeeneeeees (101°32). 

Thus if the generalised volume is the fundamental in-invariant from which. 
the dynamical laws arise, we may expect that our approximate experimental 

laws will pertain to the invariant *G,, *G#” V— g dz, which is a close approxi- 

mation to it except in very intense electromagnetic fields. 
In (100°5) we took K = *G,,*G. The alternation of the suffixes seems to 

be essential if NK/hg,, is to represent the material energy (or to be zero 
according to Weyl’s action-principle). If we do not alternate the suffixes the 
Hamiltonian derivative contains the whole energy-tensor plus the electro- 
magnetic energy-tensor, whereas we must naturally attach more significance 
to the difference of these two tensors. It may, however, be noted that 

*G., *G =*Gy, *G*” — key im (*Guy *G#”) .....-(101'88) 

(variations of «, being ignored except in so far as they affect F,,). It would 

seem therefore that the invariant K previously discussed arises from V by the 

process of ignoration of the coordinates x,. Equation (101°33) represents 

exactly the usual procedure for obtaining the modified Lagrangian function in 

dynamics. , 
If this view is correct, that the invariants which give the ordinary equations 

adopted in physics are really approximations to more accurate expressions 

based on the generalised volume, it becomes possible to predict the second- 

order terms which are needed to complete the equations currently used. It 

will sufficiently illustrate this if we consider the corrections to Maxwell's 

equations suggested by this method. 

Whereas in (79°32) we found that J# was the Hamiltonian derivative of 

1 Fe F,,./—g dr, we now suppose that it is more exactly the Hamiltonian 

derivative of /(—| *Gu» |) dr with respect to x,t. We use Cialilean (or natural) 

coordinates; and it is convenient to use the notation of § 82 in which (a, 8, c) 

takes the place of (a, 8, 1). - 

Let 
‘A=—|* Gu lat (CEP +e Xt Y?~— Z?) — 8%, 

+ This is doubtful, since the calculations in the next section do not bear it out. 

+ We consider only the variations of x, as affecting Fyy.
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where S=aX +bYV +cZ. 

Then 5q/a)= Joa f(a) bat... —(X+ =) ax—..}. 

Take a permeability and specific inductive capacity given by . 

: 1 vA : (101-41), 

Sa 

  be = XK = Re res eeteeneecenees 

so that , -a=Nal/JA, P=r12X/V/A, a 
and let S! =S]JA = (aX + BY $yZ)[Micveeveseceeees (101°42), 

‘hen aH eG 5(yA)=(a— Xs’) (5 -5)+ - 

oa, oF ab 

a 8 a, ot =| HP +08) FB-¥8)42 fy ZS’)\ 8F +... 

+{2 (P+ a8) +2 (Q+08) +2 (B+ o8)| 8(— &), 6a 
rejecting a complete differential, Equating the coefficients to the charge-and- 
current vector (az, oy, oz, p) we have 

* 0 ya 0 , 0 , 

a r a e o o p=~ (P+a8 )+ 5 (Q408')+ 5 (R+ 08) 
These reduce to the classical form 

  

Oy 28 _aP 
- Cy Oe OTN ccsseeasutesaeans (101°5), aP 3 aR, : 

On + ay + a P 

provided that 

1g, 4 B(aS’) , 0(ZS8")_ 0(¥S') 
oe at aye | esesseseens (101°6). a — 268) _ 268) _ 2(089) | | 
pe Pe oe oy az These at once reduce to ; 

of manta +75 yiSy . 
. y FU ceseseeees -..(101°7), 

, as’ os’ es’! Sp =p a 3 ae ay —° Gz) | The effect of the second-order terms is thus to make the aether appear to have a specific inductive capacity and permeability given by (101-41) and also to introduce a spurious charge and current given by (101:7),
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This revision makes no difference whatever to the propagation of light. 
Since /(#K) is always unity, the velocity of propagation is unaltered; and no 
spurious charge or current is produced because 8’ vanishes when the magnetic 
and electric forces are at right angles. oo. ; ; 

It would be interesting if all electric charges could be produced in this 
way by the second-order terms of the pure field equations, so that there would 
be no need to, introduce the extraneous charge and current (oz, cy, p)- 

I think, however, that this is scarcely possible. The total spurious charge in 
a three-dimensional region is equal to 

/ | [e-e) dadydz = — i [B.S'as by (101°6), . 

where B, is the normal magnetic induction across the boundary. This requires 

that B,,S’ in the field of an electron falls off only as the inverse square. It is 

scarcely likely that the electron has the distant magnetic effects that are implied. 

It is readily verified that the spurious charge is conserved independently 

of the true charge. ; 

- It has seemed worth while to show in some detail the kind of amendment 

to Maxwell’s laws which may result from further progress of theory. Perhaps 

the chief interest lies in the way in which the propagation of electromagnetic 

waves is preserved entirely unchanged. But the present: proposals are not 

intended to be definitive. 

102. Numerical values. 

Our electromagnetic quantities have been expressed in terms of some 

absolute unit whose relation to the c.G.s. system has hitherto been unknown. 

It seems probuble that we are now in a position to make this unit more 

definite because we have found expressions believed to be physically signi- 

ficant in which the whole energy-ténsor and electromagnetic energy-tensor . 

occur in unforced combination. Thus according to (100°6) Weyl’s constant a 

in § 90 is 4,s0 that 8= 1/22. Accordingly in (90°51) we have the combination 

1 
Sale -Z E+, 

which can scarcely be significant unless it represents the difference of the two 

tensors reduced to a common unit. .It appears therefore that in an electro-— 

magnetic field we must have . 

a, E> = San Te” = —d [Ger — 3g” (G—2A)}, 

where E*” is expressed in terms of the natural unit involved in Pye The 

underlying hypothesis is that in *G,, the metrical and electrical variables 

occur in their natural combination. - 

The constant 2, which determines the radius of curvature of the world, is 

unknown; but since our knowledge of the stellar universe extends nearly to 

10% cm., we shall adopt 

‘ 

o “y= 10-* em—-4 

It may be much smaller.
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Consider an electrostatic field of 1500 volts per em., or 5 electrostatic units. - 
The density of the energy is 5%/8z or practically 1 erg per cubic cm. The 
mass is obtained by dividing by the square of the velocity of light, viz. 
11.10-% gm. We transform this into gravitational units by remembering 
that the sun’s mass, 1:99. 10" gm., is equivalent to 147.105 cm. Hence we 
find— 

The gravitational mass-density 7 of an electric field of 1500 volts 
per cm. is 8-4. 10-* cm. per c.c. 

According to the equation EZ” = 877" we shall have 
E§=21.10-* em 

For an electrostatic field along the axis of x in Galilean coordinates we 
have ‘ 

oO Ey= $F, 

so that . w= 2.1078 

in terms of the centimetre. The centimetre is not directly concerned as a 
gauge since F, is an in-tensor; but the coordinates have been taken as 
Galilean, and accordingly the centimetre is also the width of the unit mesh. 

Hence an electric force of 1500 volts per cm. is expressed in natural 
measure by the number 2.10" referred to a Galilean coordinate-system with 
a centimetre mesh. |. ‘ 

Let us take two rods of length J at a distance 8, cm. apart and maintain 
them at a difference of potential Sx, for a time 5x, (centimetres). Compare 
their lengths at the beginning and end of the experiment. If they are all the 
time subject to parallel displacement in space and time there should be a 
discrepancy 61 between the two comparisons, given by (844) 

oa Rds 
L 

, => Fa 82,82, 

= OM 82,82, = 8x, 82,. 
ey 

For example if our rods are of metre-length and maintained for a year 
(1 light-year=10" cm.) at a potential difference of 1} million volts, the 
discrepancy is a, 

.. §6=10?.2.10-8, 10. 10" em. 
=2.10-* em. 

We have already concluded that the length of a rod is not determined by 
parallel displacement; but it would clearly be impossible to detect the dis- 
erepancy experimentally if it were so determined. co 

The value of F,, depends on the unit mesh of the coordinate-system, If 
we take a mesh of width 10% cm. and therefore comparable with the assumed 
radius of the world the value must be multiplied by 10° in accordance with 
the law of transformation of a covariant tensor. Hence referred to this natural 
mesh-system the natural unit of -electric force is about 75 volts perem. The 
result rests on our adopted radius of space, and the unit may well be less than
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75 volts per cm. but can scarcely be larger. It is puzzling to find that the 
natural unit is of the size encountered in laboratory experiments; we should 
have expected it to be of the order of the intensity at the boundary of an 
electron. This difficulty raises some doubt as to whether we are quite on the 
right track. . 

The result may be put in another form which is less open to doubt. 
Imagine the whole spherical world filled with an electric field of about 75 volts 
per cm. for the time during which a ray of light travels round the world. The 
electromagnetic action is expressed by an invariant which is a pure number 
independent of gauge and coordinate systems ; and the total amount of action 
for this case is of the order of magnitude of the number 1. The natural unit 

of action is evidently considerably larger than the quantum. With the radius 

of the world here used I find that it is 10"* quanta. a 

108. Conclusion. 

We may now review the general physical results which have been estab- 

lished or rendered plausible in the course of our work. The numbers in brackets 

refer to the sections in which the points are discussed. 

“We offer no explanation of the occurrence of electrons or of quanta; but 

in other respects the theory appears to cover fairly adequately the phenomena 

of physics. The excluded domain forms a large part of modern physics, but it 

is one in which all explanation has apparently been baffled hitherto. The 

domain here surveyed covers a system of natural laws fairly complete in itself 

and detachable from the excluded phenomena, although at one point difficulties 

arise since it comes into close contact with the problem of the nature of the 

electron. ; 

We have been engaged in world-building—the construction of a world 

which shall operate under the same laws as the natural world around us. The 

most fundamental part of the problem falls under two heads, the building- 

material and the process of building. 

The building-material. There is little’ satisfaction to the builder in the 

mere assemblage of selected material already possessing the properties which 

will appear in the finished structure. Our desire is to achieve the purpose with 

unselected material. In the game of world-building we lose a point whenever 

we have to ask for extraordinary material specially prepared for the end in 

view.. Considering the most general kind of relation-structure which we have 

been able to imagine—provided always that it is a structwre—we have found 

that there will always exist as building-material an in-tensor *G,, consisting 

of symmetrical and antisymmetrical parts Ry, and F,,, the latter being the 

curl of a vector (97, 98). This is all that we shall require for the domain of 

physics not excluded above. - . 

The process of building. Here from the nature of the case it is impossible - 

to avoid trespassing for a moment beyond the bounds of physics. The world
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which we have to build from the crude material is the world of perception, and - 
the process of building must depend on the nature of. the percipient. Many 
things may be built out of *G,,, but they will only appear in the perceptual 
world if the percipient is interested in them. We cannot exclude the con- 
sideration of what kind of, things are likely to appeal to the percipient: The 

" building process of the mathematical theory must keep step with that process 
by which the mind of the percipient endows with vivid qualities certain 
selected structural properties of the world. We have found reason to believe 
that this creative action of the mind follows closely the mathematical process 

_ of Hamiltonian differentiation of an invariant (64). 
In one sense deductive theory is the enemy of experimental physics. The 

latter is always striving to settle by crucial tests the nature of the fundamental 
things; the former strives to minimise the successes obtained by showing how 
wide a nature of things is compatible with all experimental results. We have 
called on all the evidence available in an attempt to discover what is the exact 
invariant whose Hamiltonian differentiation provides the principal quantities 
recognised in physics. It is of great importance to determine it, since on it 
depend the formulae for the law of gravitation, the mass, energy, and mo- 
-mentum and other important quantities. It seems impossible to decide this 
question without appeal to a perhaps dubious principle of simplicity; and it 
has seemed a flaw in the argument that we have not been able to exclude 
more definitely the complex alternatives (62). But is it not rather an unhoped 
for success for the deductive theory that all the observed consequences follow 
without requiring an arbitrary selection of a particular invariant ? 

We have shown that the physical things created by Hamiltonian differen- 
tiation must in virtue of mathematical identities have certain properties. When 
the antisymmetric part F,, of the in-tensor is not taken into account, they 
have the property of conservation or permanence; and it is thus that mass, 
energy and momentum arise (61). When F,, is included, its modifying effect 
on these mechanical phenomena shows that it will-manifest itself after the 
manner of electric and magnetic force acting respectively on the charge-com- 
ponent and current-components ofa stream-vector(100). Thus the part played 
by F,, in the phenomena, becomes assigned. 

All relations of space and time are comprised in the in-invariant *G,,dx,dz,, 
which expresses an absolute relation (the interval) between two points with 
coordinate differences dz, (97). To understand why this expresses space and 
time, we have to examine the principles of measurement of space and time by 
material or optical apparatus (95). It is shown that the conventions of measure- 
ment introduce an isotropy and homogeneity into measured space which need 
not originally have any counterpart in the relation-structure which is being 
surveyed. This isotropy and homogeneity is exactly expressed by Einstein's 
law of gravitation (66). 

_ The transition from the spatio-temporal relation of interval to space and
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time as a framework of location is made by choosing a coordinate-frame such 
that the quadratic form *G,,dx,dz, breaks up into the sum of four squares (4). 
It is a property of the world, which we have had to leave unexplained, that 
the sign of one of these squares is opposite to that of the other three (9); the 
coordinate so distinguished is called time. Since the resolution into four squares 
can be made in many ways, the space-time frame is necessarily indeterminate, - 

and the Lorentz transformation connecting the spaces and times of different 

‘observers is immediately obtained (5). This gives rise to the special theory of 

relativity. It is a further consequence that there will exist a definite speed 

which is absolute (6); and disturbances of the tensor F,, (electromagnetic 

waves) are propagated in vacuum with this speed (74). The resolution into 

four squares is usually only possible in an infinitesimal region so that a world- 

wide frame of space and time as strictly defined does not exist. Latitude is, 

however, given by the concession that a space-time frame may be used which 

does not fulfil the strict definition, observed discrepancies being then attributed 

to a field of force (16). Owing to this latitude the space-time frame becomes 

entirely indeterminate ; any system of coordinates may be described as a frame 

of space and time, and no one system can be considered superior since all alike 

require a field of force to justify them. Hence arises the general theory of 

relativity. ; 

The law of gravitation in continuous matter is most directly obtained from 

the identification of the energy-tensor of matter (54), and this gives again the 

law for empty space as a particular case. This mode of approach is closely 

connected with the previous deduction of the law in empty space from the 

isotropic properties introduced by the processes of measurement, since the 

components of the energy-tensor are identified with coefficients of the quadric 

of curvature (65). To deduce the field of a particle (88) or the motion of a 

particle in the field (56), we have to postulate symmetrical properties of the 

particle (or average particle); but these arise not from the particle itself but 

because it provides the standard of symmetry in measurement (66). It is then 

shown that the’ Newtonian attraction is accounted for (39); as well as the 

refinements introduced by Einstein in calculating the perihelion of Mercury 

(40) and the deflection of light (41). — 

It is possible to discuss mechanics without electrodynamics but scarcely 

possible to discuss electrodynamics without mechanics. Hence a. certain diffi- 

culty arises in our treatment of electricity, because the natural linking of the 

two subjects is through the excluded domain of electron-structure. In practice 

electric and magnetic forces are defined through, their mechanical effects on 

charges and currents, and these mechanical effects have been investigated in 

general terms (100) and with particular reference to the electron (80). One 

half of Maxwell’s equations is satisfied because F,, is the curl of a vector (92), 

and the other half amounts to the identification of F%” with the charge-and- 

current vector (73). The electromagnetic energy-tensor as deduced is found 

to agree in Galilean coordinates with the classical formulae (77).
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Since a field of force is relative to the frame of space-time which is used, 
potential energy can no longer be treated on the same footing with kinetic 

energy. It is not represented by a tensor (59) and becomes reduced to an 
artificial expression appearing in a mathematical mode of treatment which is 
no longer regarded as the simplest. Although the importance of “action” is 

- enhanced on account of its invariance, the principle of least action loses in 
status since it is incapable of sufficiently wide generalisation (60, 63). 

In order that material bodies may be on a definite scale of size there must’ 
be a curvature of the world in empty space. Whereas the differential equations 
governing the form of the world are plainly indicated, the integrated form is 
not definitely known since it depends on the unknown density of distribution 

of matter. Two forms have been given (67), Einstein’s involving a large quantity 
of matter and de Sitter’s a small quantity (69); but whereas in the latter the 
quantity of matter is regarded as accidental, in the former it is fixed in accord- 
ance with a definite law (71). This law at present seems mysterious, but it is 
perhaps not out of keeping with natural anticipations of future developments 

of the theory. On the other hand the evidence of the spiral nebulae possibly 
favours de Sitter’s form which dispenses with the mysterious law (70). 

Can the theory of relativity ultimately be extended to account in the same 
manner for the phenomena of the excluded domain of physics, to which the 
laws of atomicity at present bar the entrance? On the one hand it would 
seem an idle exaggeration to claim that the magnificent conception of Einstein 
is necessarily the key to all the riddles of the universe; on the other hand we 
have no reason to think that all the consequences of this conception have 
become apparent in a few short years. It may be that the laws of atomicity 
arise only in the presentation of the world to us, according to some extension 
of the principles of identification and of measurement. But it is perhaps as 
likely that, after the relativity theory has cleared away to the utmost the 

superadded laws which arise solely in our mode of apprehension of the world 
about us, there will be left an external world developing under specialised 
laws of behaviour. _ a ; 

The physicist who explores nature conducts experiments. He handles 
material structures, sends rays of light from point to point, marks coincidences, 
and performs mathematical operations on the numbers which he obtains. His 
result is a physical quantity, which, he believes, stands for something in the 
condition of the world. In a sense this is true, for whatever is actually occur- 
ring in the outside world is only accessible to our knowledge in so far as it 
helps to determine the results of these experimental operations. But we must 
not suppose that a law obeyed by the physical quantity necessarily has its seat 
in the world-condition which that quantity “stands for”; its origin may be 
disclosed by unravelling the series of operations of which the physical quantity 
is the result. Results of measurement are the subject-matter of physics; and 
the moral of the theory of relativity is that we can only comprehend what the 
physical quantities stand for if we first comprehend what they are.



  

SUPPLEMENTARY NOTES 

The issue of a second edition of this book affords an opportunity of adding 
some notes on points which have come to my attention in the meantime. 
For several of these I am indebted to the kindness of correspondents. A few 
corrections have been made in the body of the text. The most important of 
these is the deletion of an erroneous formula in the first edition numbered 
(59°6). The remarks on the problem of the homogeneous sphere on p. 170 
have been modified as the result of correspondence with Prof. de Donder. 

Note 1. § 8. 

It is clear from current debates on the relativity theory that the dis- 
tinction between the tinie of consciousness and the scheme of time in physical 
and astronomical reckoning is not always appreciated. The word time is in 
common use for two distinct quantities which are translated into mathe- 
matical language by different symbols dé and ds. They present an important 
contrast, viz. 

ds is an invariant; dt is not; 
dt is a perfect differential ; ds i is not. 

Naturally confusion will arise when we try to answer such ambiguous 
questions as whether time is absolute or whether two ‘observers’ have 

necessarily existed for the same time between two meetings. 
Great prominence has been given to the following deduction from the 

theory, which is an example of equation (49). An observer B leaves the 
earth with a velocity about 15 km. per sec. less than the velocity of light; 

after a while his motion is suddenly reversed and he returns to the earth. 
His journey has lasted 1 year as judged by his consciousness, his physiological 
growth, or by a chronometer travelling with him; but he finds that an 
observer A, who has remained on the earth, has aged 100 years as judged by 

similar criteria. So far there is no real difficulty. Proper-time or “time 

lived” is ds; the time of physics and astronomy or “time represented ” is dt.’ 

The world-lines of A and B are different tracks which intersect at the begin- 

ning and-end of the journey, say at P, and P,. Since ds is not a perfect 

ditferential, | ds will be different for the two tracks, i.e. the time lived will 
1 

be different. Moreover since the world-line of an undisturbed observer is 
such that this integral is a maximum (15°7) the time lived by A is greater 
than that lived by B whose motion was disturbed by reversal. On the other 

hand [ dt is the same for both*, and physical time was purposely introduced 

in order to have a reckoning which would secure this consistency. 

* Le, for both as objects observed, not as observers (since dt is not invariant), 

E. 16
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It is urged, however, that B is entitled to regard himself as at rest all the 
time, and that he will observe A to have a large velocity relative to him 
which undergoes a sudden reversal. From his point of view A is the disturbed 
person and ought to have lived the shorter time. We cannot admit this; 
‘disturbance (in the sense here used) is not a question of point of view; it is 
‘absolute. B could if he wished detect the molecular bombardment or electro- 

_Magnetic pressure which reversed his motion; he can learn observationally 
that it is he who has been disturbed, not A. But if B knows that he has 

undergone an absolute disturbance, is he still entitled to regard himself as at 
rest? I do not think we can forbid him, since he is following our own ex- 
ample. On the’surface of the earth we are disturbed by molecular bombard- 
ment of the ground, yet we consider ourselves at rest; whereas an undisturbed 
‘stone is considered to be accelerated. Thus B may consider A to be accelerated, 
but he may not consider him to be disturbed. It is because the kinematical 
acceleration is not generally coordinated with the physical disturbance that 
acceleration is relative; if the two were coordinated the disturbance would 
become an absolute acceleration. 

The problem may be modified by supposing that B reverses his motion 
by travelling like a comet round a massive star. In that case both A and B 
have “undisturbed” tracks (geodesics), and we cannot immediately predict 
which will have lived the longer proper-time. There is, however, no reason 
to expect their lives to be equal; in particular, there is no support for the 
idea that B must live through the lost 99 years in the brief time (dé) occupied 
by the reversal of his motion. It is easy to deduce from (38°8) that the 
proper time for B is not appreciably altered by substituting a gravitational 
field for a supernatural reversal, so that the conclusions of the elementary 
theory as to the respective ages of 4 and B are upheld. 

Note 2. § 24. 

With reference to the statement that an equation such as (241) does not 
afford a rigorous proof of the tensor character of A (uv), it is desirable to give 
-an example of failure. Let F(uy) be any expression antisymmetrical in » and 
-y, and let Ge’ be a symmetrical tensor, so that 

F (pv) =— F (vp) Gus = Ge, 

Then 7 Buy) Ge” = — F (vp) Ge 
, =— F (py) Ge 

‘by interchanging the dummy suffixes. Hence 

F (pv) Ge =0, 

Thus the product of F (uv) and G#” is invariant ; but it is fallacious to argue 
from this that (wv) must be a covariant tensor, since we have seen that any 
antisymmetrical expression will have this property.
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An equation, A (uv) G+’ =invariant, only allows us to infer that the 

syminetrical part of A (zv) is a tensor; the antisymmetrical part is arbitrary. 
Similarly if G+” is an antisymmetrical tensor, the inference is that the anti- 

symmetrical part of A (zy) is a tensor. 
Thus when on p. 61 we find that A,, multiplied by the symmetrical 

tensor dz,/ds.dx,/ds is an invariant, the proper deduction is that the sym- 
metrical part of 1,, is a tensor. To complete the proof of (29°3) it is necessary 
to show that the antisymmetrical part, viz. $(0A,/dc,—0A,/oz,), is also a 

tensor. The reader will easily verify this by determining its transformation 

law, using (23°12). 

Similarly the proof that g,, is a tensor at the beginning of § 25 is not 

rigorous. Any antisymmetrical expression could be added to gy, without 

altering ds*, and the proof should take account of the fact that g,, is defined 

as a symmetrical expression. A rigorous proof is easily supplied by finding 

the transformation law as suggested on p. 35. 

Although the chance of a breakdown of the general deduction from 

covariant and contravariant dimensions is somewhat greater than I originally 

realised, I do not regret having employed the.method extensively in this 

book. It is desirable that the student’s course of reading should train him 

instinctively to “spot” tensors in this way, and there is never any serious 

difficulty in confirming his discoveries by more rigorous tests. Although 

cases of failure are easily constructed artificially, I have yet to hear of a 

natural instance of this happening. 

Note 3. § 49. 

The quantity obtained by dividing a tensor by V—g may be called a , 

tensor-volume. We shall indicate tensor-volumes by Clarendon type, so that 

Sev = Taf g Ter TH g veesesesseeseeeees (1). 

Evidently T,.T#” is an invariant,.German character cancelling Clarendon. 

By (49°2) dV is an invariant-volume and should be denoted by dV. . 

The coefficient cass is at the same time a contravariant tensor-density 

and a covariant tensor-volume. We may thus write 

° €apys = Eapys = ]ABVe cece nese secereuenee (2). 

The product Eapys (878 should evidently be invariant; this is satisfied because 

by (48°31) it has the constant value 4!, 

By means of this coefficient we can associate a covariant tensor-volume 

with any antisymmetrical contravariant tensor. This process is especially 

important in connection with space-elements of 1, 2,3 or 4 dimensions, which 

are antisymmetrical contravariant tensors. Jor example, the four-dimensional 

element of volume is measured by either the tensor dV#7* or the invariant 

volume dV connected by the relation . 

(41) dV = Espypd V8? 
16—2
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Similarly the surface-element is represented by dS* or dS'., where 
. — AS'ag = Egpysd 87? oo. cs eee eteeeeesceceeees (8). 

The necessity for inserting the accent should be noticed; the result of this 
operation does not give dS,g which according to previous definitions is de- 
rived from dS by lowering the two suffixes and dividing by V—g. 

The representation of surface-elements by an adjoint vector in elementary 
three-dimensional theory arises in this way. If _ 

. dS,’ = E.s,d88", 
the vector-volume dS,’ can be used as a measure of the surface-element, The 
elementary theory (restricted to rectangular coordinates) does not discriminate 
between vectors and vector-volumes. 

From a covariant antisymmetrical tensor Fg we can derive two different 
tensor-densities §** and 8, thus 

SF = gh eV —g BF = GO Bs eee eeee (4); 
the latter is obtained merely by rearranging the components of Fag. 

As an illustration we can prove that 
198” |=| Gur] ccceccccsccsseccescescesceesenees (5). 

For this equation is equivalent to 
| Easy E cog g'egrgy = C8 E59, g5e dy Jae. 

Both sides are seen to have the same dimensions, viz. those of the square of 
an invariant-density, and so transform by the same law. In natural coordinates 
the two determinants are identical; hence their values are equal in all 
coordinate-systems. 

Note 4. § 50. 

This proof has been criticised as defective in that no explanation is given 
as to why the thickness 6 of the disc is assumed to be unaltered by rotation. 
We may examine this question by the same general method. The essential 
point is that in an incompressible and (it should be added) perfectly rigid 
disc there is no response of any kind to applied stress, so that stresses may be 
ignored; any difference between rotating and non-rotating elements must be’ 
a difference of description, not of intrinsic structure. Thus the configuration 
of molecules when referred to proper-coordinates will be the same in rotating 
as in non-rotating elements of the material, But the transformation to proper- 
coordinates does not affect ,, so that the spacing of the molecules along this 
coordinate is unaltered by the rotation. The thickness of the dise—or length 
of the chain of molecules extending from the lower to the upper surface—is 
accordingly unaltered. , 

‘Note 5. § 52. 
The four identities can be obtained in a more elegant way as follows. We 

must first establish the identity 

(Bie) + (Bror)y + (Birw)o = 0 Once cee ertonsesnerese (1),
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where the final suffix denotes covariant differentiation. To prove this we 
evaluate the left-hand side in terms of 3-index symbols by substituting (344) 
in (30°4); but it is only necessary to proceed far enough to see that the second 
derivatives of the 3-index symbols cancel out cyclically, and that the first 
derivatives occur only in combination with a 3-index symbol itself as co-factor. 
Hence the whole expression will vanish when the 3-index symbols (but not 
their derivatives) vanish, ie. in natural coordinates. The result (1) is thus 
proved for natural coordinates, and since it is a tensor equation it will be true 
for all coordinate-systems. 

Lowering the suffix ¢«, and using the antisymmetrical properties of B,,..; 
we have 

. / (Buvoe)s - (Buroe)v + (Bernye =0. 

Hence, multiplying by g’*g*’, 

. (Ge ” (@), + (Gr)o =0, 

which is equivalent to (52°1). , 
The crude statement on p. 81, that owing to the existence of these 4 

identical relations the number of gravitational equations is effectively reduced 

to 6, requires some amplification. A relation between the first derivatives of 

the G,, is not so restrictive as a relation between the G,, themselves, and it 

is not true that if 6 of the G,, are made to vanish the remaining 4 will 

identically vanish. If we consider the 40 covariant derivatives (Gi), 4 of 

these depend on the others, so that the vanishing of 36 of the derivatives 

ensures that all 40 will vanish. The effect is that the scheme of equations 

for determining the gu» is incomplete by 4, so that there remains a four-fold 

arbitrariness in the values of the g,, and therefore of the coordinate-system. 

Note 6. § 56. . . 

On reconsideration I think that it is unnecessary to assume that a particle 

has symmetrical properties in order to prove that the dynamical velocity is 

equal to the kinematical velocity. Possibly some limitations must be imposed 

on the structure of the particle, beyond the definition in the text, viz. that a 

particle is a tube containing non-vanishing energy-tensor surrounded by a 

region of zero energy-tensor ; but these limitations will be much less stringent - 

than the assumption of symmetry. ; 

In natural coordinates 02%,/oz, = 0, so that 

0%} O02 Vz OV 
Gey * Ge, * Gay Ge,” 

which may be compared with the equation in elementary electrostatics - 

OE, -0fy, of, _ 
On + wy + 2 

The latter equation leads by Gauss’s theorem to the conception of unit tubes 

of force, the whole space being divided into tubes running in the direction of
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(E,, Ey, E,) and the flux of this vector across any section of a tube remaining 
constant. Similarly in four dimensions we shall have unit tubes of [4 running 
in the direction of the vector and containing constant flux. Obviously such a 
tube cannot stray into a region where Sf{=0, since the constancy of flux 
could not then be maintained. Hence the unit tubes must run along inside 
the world-tube bounding the particle, and for an infinitesimal particle their 
direction cannot deviate appreciably from the direction of the world-tube. 
But the unit tubes have the direction of U¥, ie. the dynamical velocity, and 
the world-tube has the direction of dx, /ds, i.e. the kinematical velocity. 

I believe this argument is unassailable if we assume that every portion of 
the particle has the same dynamical velocity, so that the unit tubes run 
parallel to one another. In the more general case complications are con- 
ceivable which require fuller discussion*, e.g. the tubes may spiral round 
inside the world-tube in a screw of narrow thread. Or the world-curvature 
inside the particle may be so large and variable that natural coordinates are 
inadmissible. I think, however, that few if any of these cases will prove to be 
genuine exceptions, when the dynamical velocity of the separate elements 
has been averaged over the particle. 

Note 7. § 57. 
Further light has been obtained on the problem whether the propagation 

of gravitation with the fundamental velocity is more than a conventional 
representation. We can show that the absolute disturbance, measured in- 
dependently of the particular coordinate-system employed in § 57, is propagated 
with the velocity of light. 

Let us make a small transformation of the coordinate-system, viz. 

La = Jit + Ea, . 
where the &, are small quantities of the first order, ie. of the same order as 
hy. Then by (23-22) 

Suv + yy = (Sap + has) G: + =.) (¢ + aE 
  

OF, 

_ d&~ of. 
= Se + Thaw + up 5oo t San 52s 

correct to the first order. Hence the difference between h’y, and hy, is of the 
same order as the quantities themselves, and the law of propagation of hy, 
will not apply even approximately to h'y.. 

Contrast this with the transformation of the Riemann-Christoffel tensor, 
which is also of the first order of small quantities 

B  wvop = Basys (oi + oes) (9 +H) (9 + set) (0! + ots) He On, OL, 
  

  

== Duvops 

' * The worst complications are avoided if we refuse to admit negative mass, This prevents 
the tubes from doubling back.
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correct to the first order. Accordingly the law of propagation of Bye, will 
apply approximately to B’,,2.. (We do not expect it to apply accurately since 

the velocity of light is altered to the first order by the transformation.) 

Hence, whereas the propagation of h,, with the velocity of light is the 

property of a particular coordinate-system, the propagation of Buys, with this 

speed is general. 
It is instructive to consider this problem in detail for the case of plane 

gravitational waves. We consider plane waves travelling with velocity V in 

the direction 2, The coefficients h,, can be grouped so as to correspond to 

three kinds of waves, which can exist independently of one another, viz. . 

Jin, Ireg, Ngy transverse-transverse (TT) waves, 

hyo, Nes» Fas, Rog longitudinal-transverse (LT) waves, 

In, Igy yy = Jongitudinal-longitudinal (LL) waves. 

The condition for empty space Gy, =0 leads to the following set of | 

equations which must be satisfied *: 
Theat digg = Osc eceececeeceneecneerasenenees (1), 

(1 — V2) (Itaa, Meas, Mss) = Oe eeeceeeeerereteroreeeeeereres (2), 

Rig Vira} Thay Vitag  seeeeseeeeeereeeeeeseeee(B), 

Igg — 2 Vag HV 2h = Oe cae ee reese necee een eee encores (4). 

It follows from (2) that for TT waves V=1, so that these waves travel with 

the velocity of light. For the other tivo classes of waves there is no reason 

why V should be unity. . an 

To understand the nature of D7 and LL waves which do not travel with 

the velocity of light we suppose ho, Igy hy =0, so that no TT waves, are 

present. Then in consequence of conditions (3) and (4) it is found that the 

Riemann-Christoffel tensor vanishes altogether. Accordingly space-time is 

flat, and no absolute disturbance is occurring. LT and LL waves are spurious; 

they are merely sinuosities of our coordinate-system. They exist, not in the 

world, but in our mental attitude, and the only speed relevant to their pro- 

pagation is the “ speed of thought.” 77’ waves contribute to the Riemann- 

Christoffel tensor and involve a disturbance of the curvatures of space-time; 

we have seen that these genuine waves have the speed of light. 

The special coordinate-system used in § 57 does not necessarily eliminate 

all LL and LT waves, but it permits them only if they travel with the speed 

of light. Spurious waves with this speed cari take advantage of their 

resemblance to the genuine waves so as to slip through the censorship. 

If we group the coefficients of 77’ waves in the triad, Iiea + hiss, Jtog — hegg, Fs 

equation (1) shows that the first of these is a type of wave ‘which cannot exist 

in empty space. This is because such a wave carries energy (real energy Pw 

not the pseudo-energy 1; carried by all TT waves), and space containing real 

* Proc. Roy. Soc. 1024. v. 268, 
,
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energy is not to be regarded as empty. Light-waves and other kinds of 
electromagnetic waves belong to this class and involve a propagation of 
Non + hogy. 

Note 8. § 57. ; 
A spinning rod sets up a train of gravitational waves which travel away towards infinity. The interesting question arises whether these waves will carry away the energy of the rod so that it will gradually come to rest of its own accord, The analogous problem of spontaneous loss of energy of rotation of a double star is of considerable astronomical interest. The double star problem is still unsolved; but the result for a spinning rod, or for any rotating material bound together by cohesive force, has been obtained by Einstein (Berlin. Sitzungsberichte, 1916, p. 688; 1918, p. 154). Reference may also be made to the author's discussion (Proc. Roy. Soc. 102 a, p- 268) which in principle follows Einstein’s method and except for a factor 2 con- firms his calculation. 
The result is that a rod of moment of inertia I, spinning with angular velocity «, loses energy at the rate 

_ BERT POS oe eeeeccccccsssseeccsssssecesesses (1) 
per unit time, where /=1 for gravitational units and k=2°7.10- for c.a.s. units. The rate of decay of the rotation is in all practical cases exceedingly small, —_ 

The gravitational waves constitute a genuine disturbance of space-time, but their energy, represented by the pseudo-tensor th, Is regarded as an analytical fiction as explained in §59. In Einstein’s original method the out- ward flow of this pseudo-energy is calculated. Criticism was directed against his investigation owing to the employment of this fiction, but Einstein had no difficulty in defending its validity. We may, however, look at the problem from another point of view which ignores the fate of the lost energy, and has a peculiar historic interest of its own. If gravitation is not propagated instantaneously the lag may cause tangential components of the force to occur, so that there will be a couple presumably opposing the rotation. Laplace anticipated that if gravitation were propagated with the speed of light this disturbing couple would be large enough to be appreciable in astronomical ‘systems, and deduced from its absence that gravitation must have a much greater speed. We now know that the first order effect which Laplace expected is Compensated; but the loss of energy (1) is actually the- residual Laplace effect of the third order of small quantities, as determined by modern theory. The rod comes to rest because, taking account of the propagation from one end to the other, the gravitational attraction of its _ particles on one another is not exactly in the line of the rod and thus creates a couple destroying the rotation—in short the action and reaction are not equal and opposite. The following new deduction of (1), which is somewhat
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shorter than the investigations above quoted, brings out this aspect of the 
problem. 

Setting » =4 in (55°6) 
. ° or a 0403 

aa, = 38 at * 

Hence integrating over a three-dimensional region enclosing the rod 

a yap Wa x | sav —4 [ae av setesesenens seven), 

since the other terms on the left yield surface integrals which vanish because 
the boundary does not pass through matter. Equation (2) expresses the rate 
of change of material energy 7'j within the region, ie. in the rod which is the 
only material system there. 

In order to calculate the value of dg.g/dt to be substituted in (2) we use 
(57°7) 

    

C0 hep = 2Gag =— 162r (Las —43apT) vesecsseceseeceeee (3). 
The solution of this wave-equation is studied fully in § 74 @. We have by 
(7471) 

a dap T 1 hap =—4 [| Peete EC 

Here the square bracket is used to indicate appropriately antedated values ; 
r is the distance from the moving source dV’ at the appropriate moment to 
the point where has is to be calculated ; and v, is the component velocity of 

dV’ towards this point. Although we shall find it necessary to retain some- 
what high powers of the velocity in the coefficients of periodic terms, it is 
unnecessary to take account of the FitzGerald factor 8 occurring as a constant 

multiplier independent of the time. For the same reason we can replace T# 
by 75 in (2). Squares of has have been neglected. 

‘Hence by (2) and (4) the rate of loss of energy of the rod is 

2 fff lac a a5] - -37 5 |, |lavar sesseeees (5), 

since 7*8,,=7' to the adopted order of approximation. This integral 

exhibits the loss of energy as arising from the mutual action of pairs of 

elements of the rod, dV and dV’. 

The antedated values can be expanded in terms of contemporaneous 

values of r and Tag by the series* 

T'.8 a d —1y" | 

laal= Ft 31g ! ne or) (6), 

the quantities on the right not being antedated. 

Let the rod, spinning in the plane of zy, be along the axis of a at the 
instant t=0, the origin being at the centre.. Let dV then be at 2 and dV’ 

* See Note 10, equation (4).-
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at x’, The varying distance of the source dV’ from the fixed point 2 in- 
stantaneously occupied by @V, is 

r= (a? + 2'?— 22a’ cos wt). 

This must be used in (6) and ¢ must be made zero after the differentiations. 
In the present application we can simplify (6) by noting that if 7*4 is any 

_ component which does not vanish when, ¢=0, 7’.. will be an even function 

of t, so that derivatives of odd order disappear. Accordingly for our applica- 
tion 

r(l—2,) ~~ dB 

1 df — Doar 

This must be substituted in (5) and the earliest non-vanishing terms picked 
out.: Assuming that the rod is symmetrical (but not necessarily of uniform 
density) terms containing an odd power of x or e’ will vanish on integration. 

5 [ i | e Tap : a {T' og (a? + 2’? — 222" cos wt)} 

{Z"op (02+ a? — are’ cos wt) }—... ...(7). 

(a) Stress components, T», T2. 

These are small compared with the momentum and mass components and 
only the first term of the expansion (7) is required. Since r does not appear, 
the double integration breaks up into the product of two independent 
integrals. The contribution to (5) is 

da? , 7 09 & ? ? , -2/ av. [PnaV -2| av. 5 | TndV besseees (8). 

If o is the line-density of the rod T2dV = cw'a*da, so that 

| T2dV =Ie. 
The component 7" represents the tension of the rod and it is easily found by 
elementary dynamics that its integral is — Iw. 

For the moving source the corresponding integrals are Iw*cos2wt and 
—I* cos 2wt. Hence (8) gives the result 16J%w*. 

(b) Momentum components, T?, T*, 

We have T*dV=coads, T' dV’ =—o'wx'dz' cos at. 

The first term of (7) now yields nothing, owing to the odd powers of 2 
and a’, We take the second term and obtain Oo 

—2 | | corde. o’wx'de’ 4 (20) xa! = — 10 Tra 

T* gives an equal contribution, making a total of — 827 *0%, 

. (ce) lass components, I, T. | 

T*dV =cdz, T'.dV' = oda’,
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The third term of (7) is now required, giving 

2 | | ode .o’da! phy (20). 2a%a!? = 32 Ta, 

The proper-density Z' and the coordinate-density 7 are practically the same, 
so that the term in 7 cancels half the above amount, leaving 18 I?‘ 

Gathering together (a), (b) and (c) the rate of loss of energy is 

(16 — 32 + 48) [?w8 = 82-7708, 

agreeing with the result already stated. 
Ifa is the order of magnitude of the linear dimensions of the system and 

v of the velocities, this result is of order (Af/a)? uv’. Since hy, is of order (II/a) 
the neglect of higher powers of h,, excludes from the discussion terms of 
order (M/a)*v? and (M/a)'v. The former may possibly, and the latter will 
almost certainly occur; the approximation accordingly assumes that such 
terms are negligible in comparison with (J//a)’v. There is no theoretical 

difficulty in the existence of cohesive systems with small mass and large 

velocities for which our approximation is valid; but for gravitational] systems, 

Mja is necessarily of the same order of magnitude as 2°, and the approxima- 

tion fails. Thus the decay of energy (if any) of a double star cannot be 

investigated by this method. . 

In a sense it is true that our success in solving the problem for cohesive 

systems and our failure for gravitational systems is due to our comparative 

ignorance of the nature of cohesive forces. Presumably cohesive forces are 

propagated with the fundamental velocity and our assumption that the 

tension in the spinning rod lies wholly in the line of the rod may not be 

strictly true. On the other hand the cohesion is between neighbouring 

particles and we must not think of it as propagated from end to end of the 

rod in the way that the gravitational attraction is propagated. For this 

reason it seems plausible to neglect the propagation of cohesion ; but even if 

the effect is appreciable we can scarcely suppose that the lag of the cohesive 

forces taken alone would accelerate the rotation of the rod, so that there 

seems no possibility of the gravitational loss of energy found in this discussion 

being neutralised. The problem of the double star is more difficult; we 

should have to take account of the effect of the gravitational field in disturbing 

the propagation of its own potentials and we cannot be sure that even the 

sign of (1) is correct. a a 

-The spontaneous loss of energy of a spinning rod is interesting in con- 

nection with the problem of absolute rotation. We used often to hear the 

suggestion that a moving star would gradually be brought to rest owing to 

the back-pressure of its own radiation. Obviously there must be a fallacy* 

. The actual fallacy lay in the neglect of the gradual loss of mass of the star which is 

radiating energy—a non-vanishing force d(Mv)/dt is not inconsistent with uniform velocity if 17 

varies, 
\
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in the argument, since there is no “rest” for the star to be brought to. 
Similarly it might be thought that the conclusion that a spinning rod 
spontaneously comes to rest must be fallacious. But the relativity theory 
does not deny absolute rotation; or at least if it does, its denial has not the 
same plain meaning as its denial of absolute translation. 

Note 9. § 70, 

Equation (70°21) can at once be simplified by means of (70:1) giving 

ar dp\?_ ; 
. a7? (Ge) =. 

Since the integral of areas 

de r——=h 
ds — 

is unaltered, the motion in de Sitter’s world is the same as under a central 
repulsion varying directly with r, except that the time in the orbit corresponds 
to s, not ¢. Some of the conclusions in this section are reached more directly 
by noticing this. 
It is not impossible that the dimensions of our galaxy may be such that 
in the remoter parts this cosmical repulsion exceeds the ordinary gravitation 
of the system, thus setting a limit to the extent of the permanent aggregation 
of stars. Possibly also the same condition may have a bearing on the 
development of spiral nebulae if these are external galaxies. 

Some readers have found the argument that astronomical measurements 
of parallax determine the coordinate r (not the proper-distance Ry) too 
condensed. It may be stated more fully as follows. We make a map of the 
curved world in a Euclidean space; r and ¢@ are Euclidean polar coordinates 
in the map, each star being represented in the map at the point so deter- 
mined. In general, distances and angles measured in the world will not agree with the distances and angles represented in the map; but within the limits of the solar system, where 127° is negligibly small, the map and the world 
coalesce. Since any practical measurements are made within the solar system, all direct measurements may be immediately transferred to the map. The astronomer completes his triangulation by assuming (1) that space is Euclidean and (2) that light travels in straight lines. These assumptions are true in the map; hence the astronomer’s results refer to the map, and his deduced distance of the star is the map-distance r, If he measured the distance with measuring rods he would have to go outside the solar system, and his measures of length could not then be immediately transferred to the map; this method gives the distance fy, disagreeing with the map-distance, 

Wote 10. § 74 (d). ; 
Equation (74-71) expresses the potential at time ¢ in terms of the positions and strengths of the sources at a time t—r, different for each source, Evidently it will be useful for practical calculation to have a formula giving
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the potential at time ¢ in terms of the positions and strengths of the sources 
at the time ¢. This formula is obtained as follows. , 

Consider a fixed point P at time ¢ and a moving source P’ at time t—r. 
Let the motion of the source be prescribed so that the distance PP’ is given 
as a function of t—7, viz. 

PP’ =r=f(t—7T). 

Then the component velocity of P’ along P’P is 

, v=—adri[dt=—f" (t—7). 

Suppose that the wave emitted from P’ at time t—7 has at time ¢ reached a 
point Q in the direction P’P. Let PQ=a, so that 

the wave-velocity being unity. Then « is a function of + and vice versa. 

By differentiating (1) 
dr.» dr _ dr 

laa tt ¢-) T= A-w) a: | 

Hence, if ¢(t—7) is any quantity associated with the source P’ at the time 

t-T 

__# _¢@—r)dr_ ad py. 
raat. (t—t)da da ¢—7), 

where _ FF’ = $/f. Pew r ceca s sees eseresssvareesceees (2). 

The appropriate value of 7 required in calculating a retarded potential is 

given by the condition that Q coincides with P, ic. c=0. Hence 

[aes = {i Fit- oO vecseuscseeseacuseans (3), 

the square bracket indicating the antedated value. - 7 

By Lagrange’s theorem on the expansion of implicit functions, writing (1) 

in the form Gn) =¢-) —f(t-9, 

we have ee 

F(t—-1)=Ft--F' t-@fe-%)—-> sidan (¢—a) {f(¢—2)}") 

=F (ta) + 60-2 FS OO-9 FE -O) 

by (2). Substituting in (3), and noting that 0/aa = — 0/et, we obtain 

' d = (=)" a nl), [rates |--PO- at OrF ar Pe OUOP™ 

. d © (-)* a” n- 

Hence - aes5 | =£ - ce + “al dt (7° Db) cecaeeneeees (4), 

where on the right 7 and ¢ are to be taken for the time ¢ This expansion 

has been used in Note 8.
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Note 11. § 76. 

The equation (76'2) giving the mechanical force due to an electromagnetic 
field is essentially a macroscopic equation ; it expresses the results of experi- 
ments on matter in bulk. We must not assume that it holds for a single 
electron—in fact it is probably untrue. 

This limitation has been obscured by the fact that the law of motion 
of a single electron, which has been discovered empirically, has a false 
resemblance to (76-2). But as explained in § 80 the force on the electron is 
r+, J’, where F, is the applied external field, not the actual field F4, 
modified by the presence of the accelerated electron. In a macroscopically 
continuous distribution of charge and current the distinction between F and 
F’ is of no importance*; but in an electronic distribution F—F’ is of the 
same order of magnitude as F’ at the only points which matter, viz. where 
J+ #0. According to § 80 the condition F,,F%”=0 fulfilled in empty space 
appears to be replaced by the condition that the integral of this expression 
over the electron vanishes, or by some condition nearly akin to this. The 
appearance of an integral equation in the microscopic laws of physics is in 
accordance with modern expectation. 

From (762) the expression EY for the electromagnetic energy-tensor is 
obtained. This accordingly refers to the macroscopic electromagnetic field, 
and has nothing to do with the intense forces within and between the 
atoms. We then recognise that the whole energy-tensor (which is conserved 
identically) must consist of the two parts AM’, and E* supposed to be due 
respectively to the continuous matter and the continuous electromagnetic 
field. The question whether we could possibly dispense with If, does not 
arise, because the macroscopic conception does not admit local electronic 
fields. , 

In passing to the microscopic problem we assume that the state of the 
world at any point is still described by the variables Jw and F,,. We 

' continue to construct the formal quantities 7, and Ey» according to (54'3) 
and (77°2). The former has an evident importance because it is identically 
conserved; the latter is only of interest because it is continuous with the 
genuine electromagnetic energy-tensor which still exists in regions outside 
matter. Outside matter 7',, and E,, coalesce; inside matter they cannot be 
equal because H vanishes identically. The difference is called the non- 
Maxwellian energy-tensor M,,. It will be seen that the separation of Luv 
into Mf,,+Z,, is somewhat different according as the problem is treated 
macroscopically or microscopically, since in the former case the energy of the 
intense Maxwellian fields around the electrons is included in Muy. 

* The material is assumed to be non-polarisable. Polarisation introduces the complications discussed in § 82 and Note 12, 7G



12, 13 _SUPPLEMENTARY NOTES 255 

Note 12. § 82. 

For a further discussion of the macroscopic electromagnetic equations 
when the constitutive equations are not isotropic, see T. de Donder, Comptes 
Rendus, 9 July 1923. It will be noticed that de Donder introduces quantities 
(F,,) which appear to be intermediate between F,, and H,, as defined in this 
section. This is due to a difficulty which arises in obtaining an action-density 
and energy-tensor on the basis of § 82. The natural form of action-density 
F,,S*” can be associated with an energy-tensor 

— PyaH”* +49) Fag H* 
analogous to (77°2); but the divergence of this is not equal to the expected 
mechanical force F,,H¢ or F,,J#*, On the other hand, using the intermediate 
variable, the action-density takes the symmetrical form #’,,‘§"", and the 

derivation of a mechanical force #',,/'¢7 proceeds without difficulty. 
The macroscopically continuous variables are in any case fictitious, and 

we have a certain amount of choice in selecting the “fictions” which shall be 
regarded as homologous with the variables originally defined for empty space. 
In Maxwell’s original theory the electric displacement is an essentially 
distinct quantity from the electric force and the effect of the polarisation of. 
the medium is to alter the constants in the equations connecting them. The 
more modern view is that displacement and force are essentially the same 
quantity, and the polarisation of the medium increases the average force and 
displacement alike. De Donder’s treatment corresponds to the latter view 
and it presumably represents a closer approximation to the actual microscopic 
processes. The chief interest in preserving the older notation in § 82 is in 
connection with Mie’s theory which resurrects the antiquated notion of 
independence of displacement and force as a possibly fruitful conception in 
connection with the structure of the electron. 

Note 13. § 93. 

The formula IZ, ={u»,c}+ Sz, enables us to pass easily from results 
obtained in metrical geometry to the corresponding results in affine geometry. 

For example, corresponding to a tensor A,, we know that there is a tensor 

* Awe given by 

OA nw _ {po,€} Aer — {vo,€} Ape ceceseecsseeeeeecreenees (i). 
O25 

It follows at once that corresponding to an in-tensor A,, there will be an in- 

tensor (A,,)z given by 

~N   

OA wy 
O29 

since the difference of (1) and (2) is seen to be a tensor. ; 

But in developing an affine geometry in which metrical conceptions play: 

no part, it is not very satisfactory to prove our theorems by introducing a 

  ATi Ae — Vee vessseeseecnneenrennecrsns (2),
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provisional metric which is ultimately eliminated. The proofs are valid, but 
they remind us of conceptions which we wish to keep out of our heads. 

It is therefore desirable to notice that the operation of affine (or in-. 
covariant) differentiation can be introduced without reference to any metric, 
provisional or otherwise. In a vector-field the difference between the actual 
vector 4*+dA" at a, +d, and the vector A*+SA*# at the same point 
equivalent to A* at x,, is a vector. Hence by (91:1) . 

dA# +T% Atda, 
is a vector. It follows that 

oAn TY, As (8) iat, bP ea AS eeeceseeteeessteeeseetesensecete , 

is a tensor, which we shall call the affine derivative of A“ and denote by (A*),. Affine derivatives of other kinds of tensors are defined by the rules, (a) the affine derivative of an invariant is its ordinary derivative, (b) the affine derivative of a product is formed by the usual distributive rule. These rules secure that the quantities so defined are tensors, Eg. 

a (Aw BHC) = (Ay B*C*), by Rule (a) 
= (Apr)oBYO” + Ay, C” (BY), + Ay, Be (C’), by Rule (8). 

Substituting for (B+), and (0), according to (3), we find that (Ayy)o is the expression (2). . 
It will be found that 

(Au)o— (Aue lv =* Boye Ae sesssscesscscececcees (4), 
giving an immédiate proof that *Bive is an in-tensor (ef. (34°3)), 

Although there is no constant relation between tensors and corresponding 
tensor-densities when the metrical quantity V—g does not exist, nevertheless _ tensor-densities appear in the affine calculus independently of any metrical . conceptions. This is because there exists a purely numerical tensor-density +678 = ¢,6)3 (p. 111) which obviously has no reference to a particular metric. Affine derivatives of tensor-densities may be formed, thus 

a2[er 

  

2H"), =o, t Dee + De MH — TE HY ecseeeceeee (5), 
corresponding to | , 

Dev . : 
ay" = a + {eo, 2} Ue + feo,v} Que — feo,e} Ue” cece (6), 

in the metrical calculus, 
It is not difficult to verify that there exists a cyclic relation between the affine derivatives of the generalised Riemann-Christoffel tensor, which corre- sponds to equation (1) of Note 5, viz. 

— FBivo)s + (* Beare + (* Beye = 0 vetteseeeseeeeessena(Z). 
The tensor 2K,,,-¢ introduced in (93°3) has now a simple geometrical interpretation as the affine derivative of uve : 
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Note 14. §100. | 
An attractive development of the theory of Chapter VII, Part II has 

recently been published by Einstein (Berlin. Sitzwngsberichte, 1923, pp. 32, 76, 
137). This development may be regarded as a substitute for Weyl’s action- 
theory discussed in §90, which aims at relating the field-laws and field-tensors 
to a single regional invariant. The theory is intensely formal as indeed all 
such action-theories must be, and I cannot avoid the suspicion that the 
mathematical elegance is obtained by a short cut which does not lead along 
the direct route of real physical progress. From a recent conversation with 
Einstein I learn that he is of much the same opinion. Nevertheless, where 

' the path of progress is uncertain, it would be unwise to ignore advance along 
any open route; and we shall give an account of Einstein’s' results, which 
appeal very strongly to those who take a view of the problem before us 
slightly different from that adopted by the author. 

Let §& be an invariant-density which is a function only of the *G,,, and 
let Bev =aR/o*G,,, so that . _ 

© BR =BYYOMG ce eccceeeccececceceeeteeeees (1). 

Einstein supposes that there exists an action &dr which has the stationary 

property for all variations of the affine connection described by the coefficients 

M,. Writing t 

  

  

: ns a7 8 | tar = ee ae seessees(2), 
the stationary condition is 

ne _, 
ne, i 

Inserting (92°42) in (1) and rejecting the complete differential after the 
usual partial integration 

OB ars, — Oars, + Ber (4,808, + 14,8 re, —T8,8T% && = Gq, OP — Oa, ore +$ (Tp. 8D ay + Voy TB ~ Te, 51 ga — Teal) 

= 60y, (Fe — 8 SEs ree + Pe spe Ph Sper — aes 3B"), em OX¢ 

by changing the dummy suffixes. This may be written 

5K = ST iy {(B"")a = 8S (P#7)o} sees eesceeeceeseneeeenes (3), 

where ($#”), is the affine derivative (Note 13, equation (5)), viz. 
(Bea = OP” [Baa + TEBE + Tee Pet — hae” ceeeceeevees (4). 

tina non-metrical geometry there is no fixed association of K and S, and we have to 
introduce directly the Hamiltonian derivative of an invariant-density,. which was not provided 
for in the original definition (60°43). Equation (2) gives the definition; to remove ambiguity it 
should also be explicitly stated as part of the definition that the Hamiltonian derivative with 
respect to a symmetrical quantity is symmetrical and with respect to an antisymmetrical quantity 
is antisymmetrical. I find that Prof. de Donder had already introduced the name ‘‘ Hamiltonian 
of &” for what I have called the Hamiltonian derivative. ‘ . 

BE 17
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Since 61%, = 81%, we must not make the coefficients of these vanish 
independently but must set the sum of the two coefficients. equal to zero. 
The stationary property is accordingly expressed by 

(Ber + BrH), — 85 (Per)y— BE (Brg =O veresccsseeerseeea(B), 
Einstein identifies 3” with the sum of the tensor-densities of the metrical 

and electromagnetic fields, these constituting respectively its symmetrical 
and antisymmetrical parts; that is to say, 

per = gh + er vecaesesessssseacecaeacatees (6a). 
It will be seen that this is a departure from the author’s identification of 
*Gu with g,,+F,,, although closely analogous. Since F,, is now identified . 
through (6a) we must use another symbol for the antisymmetrical part of 
*Giy, Viz. ; 

"Gr = Rup t+ Duy cccccssecsscsceccescceasens (6 db). 
‘By (4) we see that for an antisymmetrical tensor 

(8"7)e = Ope?/ 02, = 34 
Hence (5) becomes 

2 (9*")a — 82 (9"")e — 82 (9")o — 82 S# = HES HO eles (7) - 
Contract by setting y=a; we obtain , 

| — 8 (g!*).— 53*=0,, 
so that (7) simplifies to oO, 

(GPa + $823! + ASE HO lc cceceeeee (8). 
From the comparison of covariant and affine derivatives in Note 13 

equations (5) and (6), we have , 
(g*")a _ ge” = Shee + SZgtt _ Sage” Cece eee cccececenes (9), 

where Sy = Thy — {Wr} veeececeeecsseccsscceeeccn. (10), 
as in (93°6). Since the covariant derivative of g*” vanishes we have from (8) 
and (9), by lowering suffixes and removing the density factor, 

. Sav,u + Sau,» ~ Gur See + 49ardy + Agandy = 0, 

whence multiplying by ge” - . 
a Sie= da. 

Accordingly . ; 
Bann + San» 4G Ta+ ber Iu +4 genI, = 0. 

Solving these equations for the S-tensor . 

Su», a =F Gadn th Goudy — 4390S 
By (10) we now determine the coefficients of affine connection in terms of 
familiar physical quantities © 

Dow = {n0,0} + b90 Tu + bg Ty — BGT seve lleeeeeaees (11).
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Using this value in (92:42) or (94°3) we find after a little reduction 

Ruy = wt td, 

OJ, Od | ona (@e-2)| } 
This solves the problem of determining *G,, in terms of ordinary physical 
variables identified by (6a). . 

Further progress will depend on assuming a special form of §. It will be 
remembered that Weyl’s action-principle led to two laws of nature expressed 
by (90°61) and (90°71). If we think it probable that these are the actual 
laws of the world we shall seek to identify & in such a manner that the same 
laws will result from the present theory. The first step is to connect Weyl’s 
laws with the symbols here employed. Setting @ = 4: as indicated on p. 211, 
the laws are ‘ , 

y= “= Dp sessceseccacscenecsesceecenese (18). 

3 4 
Myr = 5 (Hutte 49 ur tate) => Tule —F9urJaT®) sree (14).- 

Hence , ; 

Lu» - My» =—-87 {(Gu _~ 390 (G ” 2r)) + t (ud, 7 £9urJaJ*)} 

= — 87 (Ruy — 49 ur (R— 22) by (12). 
This difference between the whole energy-tensor and the electronic 

energy-tensor must represent the Maxwellian energy-tensor £,,. Hence 
Ey = — 87 (Ryv — $9ur(R—2n)). Since H=0, we obtain by contraction 
R=4). Again by (12) and (18) 

1 fdx,. ax, 1 one) =— 
Hence Weyl’s laws correspond to the equations 

Ey = — 87 (Ruy AGuv) } 

Fy, =— 87 Py, 
Now 

8 (Fur 8") = (Gua Gval¥ — 9) 85" §*) + FF? 8 (JuagealV—9) . 
= Fy dS" + Fog dh + Ge BF (— Gua Ire Ger897" — JvsGJua Jar dg" 

+3. 9uaGvegordg™)/V — g, 
by (35°12) and (35°) 

= 2(F,, 88" +2897) _ by (77-2). 
But Ey,897 = Bae N— 98g" + Larg?8(N—9) 

= &.,897, 

since /=0, Hence 

1 1 a , 
~ 6x 8 (Pur) = Sr (Fv dS" + Luv dge ) oe 

= (Ry Sgr” + D,,5§*”) = AGuv 9G". 

17—2
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Since gud ge” = 26 wg ) this becomes (writin ga= 327d) 

iéx® (- av—g gt+ F,,5"") = = * GOP oe eeeeeeeeee (16). 

Einstein notes that associated with any density & there will be another 
density given by 

Po Goat 
. BY 

"Ge BOY cceesepsteeeerteseneneeeee(1Da. 
This “modified” density is sects less: fundamental than the original 
density. We have by (1) and (17) . 

f= Rerd*C,, “| 7 

. — 6 = *G,, dR” 

_ Comparing (16) and (18) it follows that 

1 nme 
W = Fe —aV—g9 + F,, 5%). a 

This is Einstein’s conclusion. 
The a-term in §’, which’ seems to be a rather unnatural complication of 

the expression, arises from thé cosmical A-term in the energy. It would be 
simpler if we could dispense with the cosmical term, reverting to Einstein’s 
original unclosed space. Since A= }R, this would involve R=0. 

Hamiltonian derivatives with respect to I%, may be expected to represent 
quantities of fundamental significance in regard to the structure of the 
world; derivatives with respect to g,, and x, should rather yield quantities 

which spring into prominence in our perception of the world as the activity 
of an electromagnetic process x, working in a passive metric g,,.. Einstein 
has used the variation appropriate to his object—the formulation of a con- 
trolling law of world-structure; the author used the other variation since his 
aim was to discover quantities conspicuous in current physics. 

It is difficult to’ regard any invariant-density other than the generalised 
volume (101° 18) as ideally simple. We may therefore i inquire what would be 
the result if & is taken to be /{—|*G,,|]} +. 

Since & is then a homogeneous quadratic (but irrational) function of the 
*G,, we have by (17) . 

HE HRA WR SHB laces ceeecreneeeeen ees (19). 
Also writing A=|*G,,| se 

Spey = TCD x (minor of *G,,). 

+ Einstein originally started with the generalised volume and reached equations (12); but in 
his third paper he proved the same equations independently of the form of g. Thus the 
generalised volume is not actually used in his discussion.
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By the properties of determinants the determinant of the minors is equal to 
A. Hence 

| Per] = A/16A27= A. 

Hence tH = {—| P|} =v{—| ge + F"]} 
lA | Gat Ful} cccceeeeeeeeeee (20). 

The last step follows as in Note 8, equation (5). Thus notwithstanding the 
different: identifications of the physical tensors by Einstein and the author 
the generalised volume has the same identification in both discussions 
(except for the numerical factor) and its evaluation in § 101 is still applicable. 
We shall insert the factor © in order that current units of length may be 
used instead of the unknown natural unit; then if fourth powers of F,, are 
neglected, we have by (10131) 

. 4H = (2+ YF, Fer) V—g, 
or — 8 SANNA G+ By BO cc ccccscsccceccenteeees (21). 
This differs from the previous identification of SY only in the coefficient of 
v'—g; and we have thus obtained quite naturally a term of the right form to 
supply the cosmical term of the energy. But it is joined with the wrong signt. 

The following is perhaps a permissible way of remedying this difficulty of 
sign. The generalised volume is based on the determinant 

(4) 4= cogioeg tgnenat} 
Let (44 A’= Gs878 E59 * GL * cp * Gyn * Gos 

which is also the square of an invariant-density, but is not a determinantt. 
. The alternating expression A’ seems to be a no less natural combination 

than A. To form a term which is quadratic in the F,, we must pick out 2 of 
the 4 factors *G,,, etc., to provide the F,,. Clearly ont of the 6 possible 
selections, 2 will have the same sign in A and A’ and 4 will have opposite 
signs, Thus in the sum the quadratic term is joined with opposite signs in A 
and A’, so that by substituting A’ for A we obtain the sign which we require. 
We conclude that— A, 

Provided the natural metrical and electromagnetic units are such that 

fourth powers of the electromagnetic force are beyond the range of observation, 
the present system of field-laws (other than equations of definition) is summed 
up in the condition that 

Bf M—M) dr HO ccecceeceersesessteestin( 88), 
for all small variations of the affine connection which vanish at the boundary 
of the region. 

‘But, so far as I can see, the natural units do not satisfy the proviso (§ 102), 
and the neglected fourth powers may cause further trouble. 

+ The difference of magnitude is of no consequence since it.is absorbed in the choice of unit 

of Fy y+ . | 

+ My attention was called to this expression by Prof. R. Weitzenbick.
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Note 15. § 108. 

If we could write down exactly the whole system of equations holding in 
the physical world, these equations would themselves contain the definitions 
of all the quantities occurring in them. For any definition—any statement 
as to the mode in which such a quantity is to be recognised and measured— 
is itself capable of expression as one of the equations of physics. If the 
number of independent equations is not greater than the number of 
quantities to be defined, no governing law will be imposed on the substratum 
of the world, and those laws of nature which we discover must be implicit in 
the definition of the quantities which obey them. Such truisms appear 
remarkable because in actual experience we deal with mental images associated 
with the physical quantities by processes which physics is unable to explore. 
We shall assume, however, that the number of independent equations n ex- 
ceeds the number of definitions m. In that case we can divide the equations 
into m equations of definition and n —m equations of control. 

It is generally admitted that we are not in a position to formulate the 
real equations of control which belong to the domain of electron structure 
and quantum activity, and that a radical alteration of our methods is needed 
to deal with these successfully. The field-theory (which we have seen in 
Note 11 to be essentially macroscopic) skirts round the excluded domain 
without however entirely avoiding it. We find that the number of field- 

‘equations exceeds the required number of definitions by one, so that one 
equation of control is needed which (however disguised by macroscopic 
averaging) must arise in the forbidden territory. This equation of control in 
the present development is taken to be the law of ponderomotive force of the 
electromagnetic field. (The choice of a particular equation is arbitrary, e.g. 
in elementary electrostatics the law of ponderomotive force is the definition 
of electric charge, and some other equation then becomes the equation of 
control.) , . 

Having satisfied ourselves that we have rightly discovered the m equations 
of definition and the single equation of control it would appear that our task 
is at an end—until the excluded domain can be entered. The task is left in 
an untidy state, but that is perhaps inevitable since it is admittedly un- 
finished. Nevertheless a certain amount of preliminary tidying up is possible. 
We can, of course, define anything we like; but in practice we define only 
certain things which have a particular prominence—an importance from a 
certain aspect. It is certainly a step forward to recognise that there is a 
uniformity in the aspect here referred to—that “ prominence in our survey 
of the world” is a definite character capable of mathematical specification. 
This introduces an orderliness into our equations of definition. Probably the 
secret of this prominence lies in the excluded domain with its unknown 
equations of control; or we may connect it with our faculties of perception,
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which perhaps comes ultimately to the same thing. In the field-theory we 
must be content with discovering the formal principle (of Hamiltonian 
differentiation) and noting its unifying effect on our equations of definition. 

We have divided physics into two parts, one of which we are competent 
to deal with by our methods of continuous analysis and the other we are not - 
competent to deal with. We do not pretend to predict a priori how nature 
will behave, but it is not impossible to set limits to the behaviour of that 
part of nature with which we are competent to deal, if we know the limits of 

that competence. So that provided that there exists a domain or structure 
(viz. the macroscopic field) which satisfies this condition, provided also that” 
we have a criterion of “prominence” for selecting the quantities important 
to study, we may be able to predict the field properties. That is what the 
affine theory in Chapter VII, Part II attempts to do, and it is-I think 

partially successful. The idea is that the affine connection is the most 
general structure coming within the scope of continuous analysis (a contention 
not fully demonstrated) and may therefore be used as a basis of prediction. 

The single law of control cannot be predicted @ priori, since it arises in 
the excluded region and is not limited by the competence of particular 
mathematical analysis. We might find that, without attempting to trace its 
microscopic origin, we could give it a simple, formal expression in macroscopic . 
terms; and it is the object of the action-theories of Weyl (§ 90) and Einstein ~ 
(Note 14) to reduce this expression to the simplest form. One difficulty is 
that any law of stationary action seems to lead necessarily to two equations 
of control, corresponding to symmetrical and antisymmetrical components, 
and the superfluous equation (90°71) has to be explained away as outside 
practical observation. It appears to the author more profitable, instead of 
seeking a purely formal expression of the law of control, to make a slight 
inroad into the excluded domain; then the law is seen to arise from a simple 
limitation of electron structure, viz. that, a certain integral property, known 
to hold in the absence of an external field, is preserved in all cases (§ 80). 

The action-principle is no doubt attractive in that it makes the field-theory 
formally complete in itself without reference to an excluded domain, but the 
attraction is somewhat dimmed by our knowledge that the completeness 
cannot be more than formal.
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Electric charge, conservation of 173; in- 
variance of 174 ‘ 

Electromagnetic action 187; energy-tensor 
182; force 171; potential 171; signals 
28; volume 194; waves, propagation of 
175 

Electron, non-Maxwellian stresses in 183 ; 
gravitational field of 185; acceleration in 

. electromagnetic field 189;. size of 192; 
magnetic constitution of 211 

Elements of inner planets 89 
Elliptical space 157 . 
Empty space 221 
Energy, identified with mass 32 
Energy, potential 135 
Energy-tensor of matter 116, 141 ; of electro- 

magnetic field 182; obtained by Hamil- 
tonian differentiation 147, 229 

Entropy 34 
Equivalence, Principle of 41 
Equivalence of displacements 213, 226 
Experiment and deductive theory 105 
Explanation of phenomena, ideal 106 
Extension and location 9 

Fuy (electromagnetic force) 171, 219 
Fields of force 37 
Finiteness of space 156 
FitzGerald contraction 25 
Fizeau’s experiment 21 
Flat space-time 16 ; condition for 76 
Flux 67 ; gravitational 144 ; electromagnetic 

192, 233 
Force, covariant and contravariant com- 

ponents 50 ; expressed by 3-index symbols 
122 . : te 

Force, electromagnetic 171 ; Lorentz trans- 
formation of 179; mechanical force due 
to 180, 189, 229 

Foucault’s pendulum 99 
Four dimensions of world 206 
Fraunhofer lines, displacement of 91 
Fresnel’s convection-coefficient 21 
Fundamental theorem of mechanics 115 
Fundamental velocity 19; tensors 55, 79; 

invariants 141] 

Guy (Einstein tensor) 81 
Galilean coordinates 38 
Gauge-system 200, 217 
Gauging-equation 219 
Gaussian curvature 82,151. 
Generalisation of Weyl's theory 213 
Generalised volume 206, 232 
Geodesic, equations of 60 ; produced by 

parallel displacement 71 Se 

INDEX 

Geodesic curvature 91 
Geometry, Riemannian 11; abstract and 

natural 37 ; world geometry 198; affine 
geometry 214 

German letters, denoting tensor-densities 
111 

Graphical representation 196 
Gravitation 38. See also Einstein’s law 
Gravitation, Newtonian constant of 128 
Gravitational field of a particle 82; of an 

electron 185 
Gravitational flux 144 . 
Gravitational mass of sun 87 ; equality with 

inertial mass 130, 145 
Group 47 

h (Hamiltonian operator) 139 
hy (ponderomotive force) 181 
Hamiltonian derivative 139 ; of fundamental 

invariants 141; of electromagnetic action 
187; of general world-invariants 228; 
creative aspect of 147, 230, 238 

Homogeneous sphere, problem of 168 
Horizon of world 101, 157, 165 
Hydrodynamics, equations of 117, 118 
Hydrostatic pressure 121 - 

Identification, Principle of 119, 222 
Identities satisfied by Gu, 95, 115. 
Ignoration of coordinates 233 
Imaginary intervals 12 
In- (prefix) 202 
Incompressibility 112, 122 
In-covariant derivative 203 
Indicatrix 150 
Inductive theory 105 
Inertia, elementary treatment 29; electro- 

magnetic origin of 183 
Inertial frame, precession of 99 . 
Inertial mass 128; equal to gravitational 

mass 130, 145 
In-invariants 205, 232 — 
Inner multiplication 53 
Integrability of parallel displacement 73; 

of length and direction 198 
Intensity and quantity 111 
In-tensors 202 ; fundamental 215 
Interval 10 , 
Invariant 30; formation of 58 
Invariant density (proper-density) 121 
Invariant-density (scalar-density) 111 
Invariant mass 30, 183 
Isotropic coordinates 93 : 

Ju (charge-and-current vector) 172 
Jacobian 108 

Kepler’s third law 89 - 
.. Kinematical velocity 120, 125 

Lagrange’s equations 132 . 
Lagrangian function 131, 233



INDEX 

Length, definition of 1, 217; measurement 
of 11; non-integrability of 198 

Length of a vector 57 . 
Light, velocity of .19, 23; deflection in 

gravitational field 90; propagation of 175 
Light-pulse, equation of track 37 ; in curved 

world 163 ; in-invariant equation 220 
_ Location and extension 9 
Longitudinal mass 31 . 
Lorentz transformation 17, 25; for electro- 

magnetic force 179 

Jfyv (material energy-tensor) 181 
Macroscopic electromagnetic equations 194 
Magnetic constitution of electron 211 
Manufacture of physical quantities 1 
Mass, invariant and relative 30, 183 ; gravi- 

tational and inertial 128, 180, 145; 
" electromagnetic 193 oo 
Mass, variation with velocity 30 ; identified 

with energy 32; of electromagnetic field 183 
‘Mass of the world, total 166 . 
Mass-horizon of world 165 
Mathematics contrasted with physics 1 
Matter, conservation of 33 ; identification of 

119, 146. : 
Maxwell’s equations 172; second order 

corrections to 234 
Measure of interval 11 
Measure-code 2, 48 . 
Measurement, principle of 220, 238 
Mechanical force of electromagnetic field 180; 

explanation of 189 ; ‘general theory of 229 
Mercury, perihelion of 89 
Mesh-system 9 
Metric, introduction of 216; sole character. 

of space and time 221 . 
Michelson-Morley experiment 19 
Mixed tensors 52 
Momentum, elementary treatment 29 ; con- 

servation of 118 ; electromagnetic 183 
Moon, motion of 95 
Multiplication, inner and outer 53 

Natural coordinates 80; gauge 206, 219; 
geometry 38, 196; measure 80 

Nebulae, velocities of 162 . / 
Non-integrability of length and direction 198 
Non-Maxwellian stresses 182, 184 
Non-Riemannian geometry 197 
Normal, 6-dimensional 151 
Null-cone 22 
Number of electrons in the world 167 
Numerical value of quantum 237 

Operators, D 64, h 139 
Orbits of planets 85 
Order, coordinate agreeing with structural 

295 

Parallel displacement 70, 213 
Parallelogram-law 214 
Parallelogramical property 226 
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Particle, motion of 36; gravitational field of 
82, 100; dynamics of 125; symmetry of 
125, 155 

Percipient, determines natural laws by selec- 
tion 238 

Perigee, advance of 99 . 
Perihelion, advance of 88; in curved world 

100 : 
Permanence 115 
Permeability, magnetic 195, 234 
Perpendicularity of vectors 57 
Persistence and adjustment 208 
Physical quantities 1; definition of 3° 
Planetary orbits 85 
Point-electron 186 
Ponderomotive force. See Mechanical force 
Postulates, list of 104 . 
Potential, gravitational 59, 124; electromag- 

netic 171, 175, 201 
Potential energy 135, 148 
Poynting’s vector 183 . 
Precession of inertial frame 99 
Pressure, hydrostatic 121; in homogeneous 

sphere 169 7 ot : 
Principle of dimensions 48, 54; of equivalence 

41; of identification 119, 222 ; of leastaction 
139, 147, 209; of measurement 220, 238 © 

Problem of tio bodies 95; of rotating disc 
112; of homogeneous sphere 168 

Product, inner and outer 53 
Propagation of gravitational waves 130; of 

electromagnetic waves 175° 
Propagation with unit velocity 64 ;. solution 

of equation 178 . , . 7 
Proper- (prefix) 34. See Invariant mass and 

Density 
Proper-coordinates 80° | 
Proper-time 87 
Proper-volume 110 
Pseudo-energy-tensor 135 
Pseudo-vector 179 

Quadratic formula for interval 10; justifica- 
tion of 224 

Quadric of curvature 152 
Quantity and intensity 111 
Quantum, excluded from coordinate calcula- 

tions 225 ;. numerical value of 237 
Quotient law 5 , 

Ry» (gauging-tensor) 219 
Rapidity 22 
Recession of spiral nebulae 157, 161 
Rectangular coordinates and time 13 . 
Red-shift of spectral lines in sun 91; in 

nebulae 157, 161: 
Relation-structure 224 .. 
Relativity of physical quantities 5 
Retardation of moving clocks 16, 26 
Retarded potential 179 — 
Riemann-Christoffel tensor 72; vanishing of 

73, 76; importance of 79; generalisation 
of 204, 215
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Riemannian geometry 11 
Rotating axes, quadratic form for 35 
Rotating dise 112 
Rotation, absolute 99 

Scalar 52 . 
Scalar-density 111 
Self-perpendicular vector 57 
Simultaneity at different places 27 
de Sitter’s spherical world 155, 161 
Space, a network of intervals 158 
Spacelike intervals 22 
Special theory of relativity 16 
Spectral lines, displacement in sun 91; in 

nebulae 157, 161 . 
Sphere, problem of homogeneous 168 
Spherical curvature, radius of 151 
Spherical world 155, 161 
Spiral nebulae, velocities of 162 

* Spur 68 
Static coordinates 81 : 
Stationary action, principle of 139, 147, 209 
Stokes’s theorem 67; application of 214 
Stress-system 117; gravitational field due to 

104; electromagnetic 183 ; non-Maxwellian 
184 : 

Structure, represented by relations 224 
Substitution-operator 51, 55 _ ' 
Suffixes, raising and lowering of 56 
Summation convention 50 
Sun, gravitational mass of 87 
Surface-element 66; in-invariant pertaining 

to 232 
Symmetry, a relative attribute 155; of a 

particle 125, 155; of an electron 192 

Tuy (energy-tensor) 102, 116 - 
Temperature 34 
Tensor 51 
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INDEX 

Tensor-density 111 
Tensor equations 49 
Things 221 
Three-index symbol 58; contracted 74; 

generalised 203, 218 
Time, definition of 14; convention in reckon- 
ing 15, 29 ; immediate consciousness of 23; 
extended meaning 39 

Timelike intervals 22 
Track of moving particle and light-pulse 36. 
Transformation of coordinates, Lorentz 17; 

general 34, 43 
Transport of clocks 15, 27 
Two bodies, problem of 95 

Uniform vector-field 73; mesh-system 77 
Unit, change of 48; of action 237 

Vector 43; mathematical notion of 44 ; 
physical notion of 47 

Velocity, fundamental 19 
Velocity of light 19; in moving matter 21; 

in sun’s gravitational field 93 
Velocity-vector 71 
Volume, physical and geometrical 110; elec- 

tromagnetic 194; generalised 206, 232 
Volume-element 109 

Wave-equation, solution of 178 
Waves, gravitational 130; electromagnetic 

175 
Weyl’s theory 198; modified view of 208 
World, shape of 155; mass of 160, 166 
World geometry 198 
World-invariants, dynamical properties of 

228 
World-line 125 

Zero-length of light tracks 199 
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